Github for the NIPS 2020 paper "Learning outside the black-box: at the pursuit of interpretable models"
To build a symbolic regressor for a given dataset and a given model (or a given model type), the following command can be used :
python3 build_interpreter.py [-h] [--dataset DATASET] [--test_ratio TEST_RATIO]
[--model MODEL] [--model_type MODEL_TYPE]
[--verbosity VERBOSITY] [--loss_tol LOSS_TOL]
[--ratio_tol RATIO_TOL] [--maxiter MAXITER]
[--eps EPS] [--random_seed RANDOM_SEED]
For example, if one would like to train a MLP one the wine-quality-red dataset and then fit a symbolic regressor with random seed 27, one can use the command
python3 build_interpreter --dataset wine-quality-red --model_type MLP --random_seed 27
For more details on how to use the module in general, see the 3 enclosed notebooks.
1. Building a Symbolic Regressor
2. Symbolic Pursuit vs LIME
3. Synthetic experiments with Symbolic Pursuit
Name | Version |
---|---|
cite2c | 0.2.1 |
joblib | 0.17.0 |
jupyter | 1.0.0 |
lime | 0.2.0.1 |
numpy | 1.19.1 |
python | 3.7.9 |
scikit-learn | 0.23.2 |
sympy | 1.6.2 |
xgboost | 1.2.1 |
In our experiments, we used implementations of LIME, SHAP and pysymbolic