forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
apcnet.yml
232 lines (232 loc) · 7.59 KB
/
apcnet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
Collections:
- Name: APCNet
Metadata:
Training Data:
- Cityscapes
- ADE20K
Paper:
URL: https://openaccess.thecvf.com/content_CVPR_2019/html/He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_CVPR_2019_paper.html
Title: Adaptive Pyramid Context Network for Semantic Segmentation
README: configs/apcnet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111
Version: v0.17.0
Converted From:
Code: https://github.com/Junjun2016/APCNet
Models:
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 280.11
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.02
mIoU(ms+flip): 79.26
Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 465.12
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 11.2
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.08
mIoU(ms+flip): 80.34
Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
- Name: apcnet_r50-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 657.89
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.89
mIoU(ms+flip): 79.75
Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
- Name: apcnet_r101-d8_769x769_40k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 970.87
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 12.7
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.96
mIoU(ms+flip): 79.24
Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.96
mIoU(ms+flip): 79.94
Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.64
mIoU(ms+flip): 80.61
Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
- Name: apcnet_r50-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.79
mIoU(ms+flip): 80.35
Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
- Name: apcnet_r101-d8_769x769_80k_cityscapes
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.45
mIoU(ms+flip): 79.91
Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
- Name: apcnet_r50-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 50.99
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.2
mIoU(ms+flip): 43.3
Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
- Name: apcnet_r101-d8_512x512_80k_ade20k
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 76.34
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 13.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.54
mIoU(ms+flip): 46.65
Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
- Name: apcnet_r50-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.4
mIoU(ms+flip): 43.94
Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
- Name: apcnet_r101-d8_512x512_160k_ade20k
In Collection: APCNet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.41
mIoU(ms+flip): 46.63
Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth