-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbrnn.py
359 lines (272 loc) · 11.1 KB
/
brnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import csv
import dill
import parser
from preprocess import clean
from gensim.models import Word2Vec
def relu(z):
return z * (z > 0)
def relu_prime(z):
return (z > 0)
def clip(v):
return v[:10]
class RNN:
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01, direction="right"):
self.direction = direction
self.hidden_size = hidden_size
self.learning_rate = learning_rate
self.f = np.tanh
self.f_prime = lambda x: 1 - (x ** 2)
self.Wxh = np.random.randn(hidden_size, input_size) * np.sqrt(2.0 / (hidden_size + input_size))
self.Whh = np.random.randn(hidden_size, hidden_size) * np.sqrt(2.0 / (hidden_size * 2))
self.Why = np.random.randn(output_size, hidden_size) * np.sqrt(2.0 / (hidden_size + output_size))
self.bh = np.zeros((hidden_size, 1))
self.by = np.zeros((output_size, 1)) # output bias - computed but not used
self.mWxh, self.mWhh, self.mWhy = np.zeros_like(self.Wxh), np.zeros_like(self.Whh), np.zeros_like(self.Why)
self.mbh, self.mby = np.zeros_like(self.bh), np.zeros_like(self.by) # memory variables for Adagrad
# self.dropout_percent = 0.95
def forward(self, x, hprev, do_dropout=False):
if (self.direction == 'left'):
x = x[::-1]
xs, hs, ys, ps = {}, {}, {}, {}
hs[-1] = np.copy(hprev)
seq_length = len(x)
for t in range(seq_length):
xs[t] = x[t].reshape(-1, 1)
hs[t] = self.f(np.dot(self.Wxh, xs[t]) + np.dot(self.Whh, hs[t - 1]) + self.bh)
# if(do_dropout):
# hs[t] *= np.random.binomial(1, self.dropout_percent, size=hs[t-1].shape)
# else:
# hs[t] *= self.dropout_percent
ys[t] = self.f(np.dot(self.Why, hs[t]) + self.by)
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
return xs, hs, ys, ps
def backprop(self, xs, hs, ys, ps, targets, dy, do_dropout=False):
if self.direction == 'left':
xs = {len(xs) - 1 - k: xs[k] for k in xs}
dWxh, dWhh, dWhy = np.zeros_like(self.Wxh), np.zeros_like(self.Whh), np.zeros_like(self.Why)
dbh, dby = np.zeros_like(self.bh), np.zeros_like(self.by)
dhnext = np.zeros_like(hs[-1])
for t in reversed(range(len(xs))):
tmp = dy[t] * self.f_prime(ys[t]) # * self.dropout_percent
dWhy += np.dot(tmp, hs[t].T)
dby += tmp
dh = np.dot(self.Why.T, dy[t]) + dhnext
dhraw = dh * (1 - hs[t] ** 2)
# dhraw = dh * relu_prime(hs[t])
dbh += dhraw
dWxh += np.dot(dhraw, xs[t].T)
dWhh += np.dot(dhraw, hs[t - 1].T)
dhnext = np.dot(self.Whh.T, dhraw)
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return dWxh, dWhh, dWhy, dbh, dby, hs[len(xs) - 1]
def update_params(self, dWxh, dWhh, dWhy, dbh, dby):
# perform parameter update with Adagrad
for param, dparam, mem in zip([self.Wxh, self.Whh, self.Why, self.bh, self.by],
[dWxh, dWhh, dWhy, dbh, dby],
[self.mWxh, self.mWhh, self.mWhy, self.mbh, self.mby]):
mem += dparam * dparam
param += -self.learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
class BiDirectionalRNN:
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01):
self.hidden_size = hidden_size
self.learning_rate = learning_rate
self.right = RNN(input_size, hidden_size, output_size, learning_rate, direction="right")
self.left = RNN(input_size, hidden_size, output_size, learning_rate, direction="left")
self.by = np.zeros((output_size, 1))
self.mby = np.zeros_like(self.by)
def forward(self, x):
seq_length = len(x)
y_pred = []
dby = np.zeros_like(self.by)
xsl, hsl, ysl, psl = self.left.forward(x, np.zeros((self.hidden_size, 1)))
xsr, hsr, ysr, psr = self.right.forward(x, np.zeros((self.hidden_size, 1)))
for ind in range(seq_length):
this_y = np.dot(self.right.Why, hsr[ind]) + np.dot(self.left.Why, hsl[ind]) + self.by
y_pred.append(this_y)
return np.argmax(y_pred[-1])
def train(self, training_data, validation_data, epochs=5, do_dropout=False):
for e in range(epochs):
print('Epoch {}'.format(e + 1))
for x, y in zip(*training_data):
x = clip(x)
hprevr = np.zeros((self.hidden_size, 1))
hprevl = np.zeros((self.hidden_size, 1))
seq_length = len(x)
xsl, hsl, ysl, psl = self.left.forward(x, hprevl, do_dropout)
xsr, hsr, ysr, psr = self.right.forward(x, hprevr, do_dropout)
y_pred = []
dy = []
dby = np.zeros_like(self.by)
for ind in range(seq_length):
this_y = np.dot(self.right.Why, hsr[ind]) + np.dot(self.left.Why, hsl[ind]) + self.by
y_pred.append(this_y)
for ind in range(seq_length):
this_dy = np.exp(y_pred[ind]) / np.sum(np.exp(y_pred[ind]))
t = np.argmax(y)
# t = y
this_dy[t] -= 1
dy.append(this_dy)
dby += this_dy
y_pred = np.array(y_pred)
dy = np.array(dy)
self.mby += dby * dby
self.by += -self.learning_rate * dby / np.sqrt(self.mby + 1e-8) # adagrad update
dWxhr, dWhhr, dWhyr, dbhr, dbyr, hprevr = self.right.backprop(xsr, hsr, ysr, psr, y, dy, do_dropout)
dWxhl, dWhhl, dWhyl, dbhl, dbyl, hprevl = self.left.backprop(xsl, hsl, ysl, psl, y, dy, do_dropout)
self.right.update_params(dWxhr, dWhhr, dWhyr, dbhr, dbyr)
self.left.update_params(dWxhl, dWhhl, dWhyl, dbhl, dbyl)
print("(val acc: {:.2f}%)".format(self.predict(validation_data) * 100))
save_model(self, e + 1)
print("\nTraining done.")
def predict(self, testing_data, test=False):
correct = 0
predictions = {x: 0 for x in range(TYPE)}
outputs = {x: 0 for x in range(TYPE)}
pred_pos = {x: 0 for x in range(TYPE)}
pred_neg = {x: 0 for x in range(TYPE)}
l = 0
for x, y in zip(*testing_data):
x = clip(x)
tr = np.argmax(y)
op = self.forward(x)
predictions[op] += 1
outputs[tr] += 1
correct = correct + 1 if op == tr else correct + 0
l += 1
if (op == tr):
pred_pos[op] += 1
else:
pred_neg[op] += 1
if test:
print 'Outputs:\t', outputs
print 'Predictions:\t', predictions
precision = {}
recall = {}
for i in range(TYPE):
precision[i] = 1 if predictions[i] == 0 else (pred_pos[i] + 0.0) / predictions[i]
print 'Precision', i, ':', precision[i]
for i in range(TYPE):
recall[i] = 1 if outputs[i] == 0 else (pred_pos[i] + 0.0) / (outputs[i])
print 'Recall', i, ':', recall[i]
for i in range(TYPE):
print 'F1 Score', i, ':', (2 * precision[i] * recall[i]) / (precision[i] + recall[i])
print correct, l
return (correct + 0.0) / l
def load_data(filename, count):
i = 0
with open(filename, 'r') as f:
reader = csv.reader(f)
inputs = []
outputs = []
for row in reader:
inputs.append(row[0])
outputs.append(int(row[1]))
i += 1
if i == count:
break
return inputs, outputs
def w2v(sentence):
words = []
for word in sentence.split():
try:
words.append(model[word])
except Exception:
pass
return np.array(words)
def one_hot(x):
def three(x):
if x < 2:
return 0
elif x > 2:
return 2
else:
return 1
v = np.zeros(TYPE)
if TYPE == 3:
v[three(x)] = 1
else:
v[x] = 1
return v
def save_model(BRNN, epoch=0):
if (epoch):
with open('temp_models/brnn_model_%s_%s.pkl' % (TYPE, epoch), 'wb') as f:
dill.dump(BRNN, f)
else:
with open('brnn_models/brnn_model_%s.pkl' % TYPE, 'wb') as f:
dill.dump(BRNN, f)
def load_model():
with open('brnn_models/brnn_model_%s.pkl' % TYPE, 'rb') as f:
BRNN = dill.load(f)
return BRNN
if __name__ == "__main__":
DATA_SIZE = 3000000
TYPE = 5
INPUT_SIZE = 64
HIDDEN_SIZE = 16
OUTPUT_SIZE = TYPE
model = Word2Vec.load('model%s' % INPUT_SIZE)
train_size = DATA_SIZE * 0.8
val_size = DATA_SIZE * 0.1
test_size = DATA_SIZE * 0.1
t_i, t_t = load_data('train.csv', train_size)
v_i, v_t = load_data('dev.csv', val_size)
ts_i, ts_t = load_data('test.csv', test_size)
training_inputs = []
training_targets = []
for i in range(len(t_i)):
v = w2v(t_i[i])
if len(v) == 0:
continue
training_inputs.append(v)
training_targets.append(one_hot(t_t[i]))
validation_inputs = []
validation_targets = []
for i in range(len(v_i)):
v = w2v(v_i[i])
if len(v) == 0:
continue
validation_inputs.append(v)
validation_targets.append(one_hot(v_t[i]))
testing_inputs = []
testing_targets = []
for i in range(len(ts_i)):
v = w2v(ts_i[i])
if len(v) == 0:
continue
testing_inputs.append(v)
testing_targets.append(one_hot(ts_t[i]))
EPOCHS = 10
LEARNING_RATE = 0.20
TRAIN = False
RETRAIN = False
BRNN = None
if TRAIN:
if (RETRAIN):
BRNN = load_model()
else:
BRNN = BiDirectionalRNN(INPUT_SIZE, HIDDEN_SIZE, OUTPUT_SIZE, learning_rate=LEARNING_RATE)
BRNN.train(training_data=(training_inputs, training_targets),
validation_data=(validation_inputs, validation_targets), epochs=EPOCHS, do_dropout=True)
save_model(BRNN)
else:
BRNN = load_model()
# BRNN.predict = BiDirectionalRNN(INPUT_SIZE, HIDDEN_SIZE, OUTPUT_SIZE, learning_rate=LEARNING_RATE).predict
accuracy = BRNN.predict((testing_inputs, testing_targets), True)
print("Accuracy: {:.2f}%".format(accuracy * 100))
while False:
sentence = raw_input("Enter a sentence to parse: ")
phrases = parser.create_phrases(parser.create_tree(sentence))
out_p = []
out_s = []
for phrase in phrases:
phrase = clean(phrase)
v = w2v(phrase)
if phrase and phrase not in out_p:
out_p.append(phrase)
if v.shape[0]:
out_s.append(BRNN.forward(v))
else:
out_s.append(TYPE / 2)
print zip(out_p, out_s)