forked from MoisesExpositoAlonso/popgensim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MCMCnapdev.cpp
1545 lines (1320 loc) · 46.8 KB
/
MCMCnapdev.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <random>
#include <chrono>
#include <ctime>
#include <cstdio>
#include <stdio.h>
#include <math.h>
#include <vector>
#include <list>
#include <iostream>
#include <string>
// when armadillo is loaded, remove this below
//#include <Rcpp.h>
#include <RcppArmadillo.h>
#include <RcppArmadilloExtensions/sample.h>
#include <RcppEigen.h>
using namespace Rcpp;
using namespace std;
#include <bigmemory/MatrixAccessor.hpp>
#include <bigmemory/isna.hpp>
// [[Rcpp::depends(BH)]]
// [[Rcpp::depends(bigmemory)]]
// [[Rcpp::depends(Rcpp)]]
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::depends(RcppEigen)]]
// Enable C++11 via this plugin (Rcpp 0.10.3 or later)
// [[Rcpp::plugins(cpp11)]]
////////////////////////////////////////////////////////////////////////////////
/// Profiling utilities
////////////////////////////////////////////////////////////////////////////////
// RcppExport SEXP start_profiler(SEXP str) {
// ProfilerStart(as<const char*>(str));
// return R_NilValue;
// }
// RcppExport SEXP stop_profiler() {
// ProfilerStop();
// return R_NilValue;
// }
////////////////////////////////////////////////////////////////////////////////
/// Utilities
////////////////////////////////////////////////////////////////////////////////
#define PBSTR "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
#define PBWIDTH 60
void printProgress (double percentage)
{
int val = (int) (percentage * 100);
int lpad = (int) (percentage * PBWIDTH);
int rpad = PBWIDTH - lpad;
printf ("\r%3d%% [%.*s%*s]", val, lpad, PBSTR, rpad, "");
fflush (stdout);
}
template <typename T>
Rcpp::NumericVector arma2vec(const T& x) {
return Rcpp::NumericVector(x.begin(), x.end());
}
template <typename T>
arma::vec vec2arma(const T& x) {
return Rcpp::as<arma::vec>(x);
}
// [[Rcpp::export]]
NumericVector sample_num( NumericVector x,
int size,
bool replace,
NumericVector prob = NumericVector::create()
)
{
NumericVector ret = RcppArmadillo::sample(x, size, replace, prob) ;
return ret ;
}
// #define MIN_NUM = std::numeric_limits<float>::min(); // problem is that it does not know the type
const double MIN_NUM = std::numeric_limits<float>::min();
// #define PIraw = 3.14159265358979323846;
// const double PI= 3.14159265358979323846;
// # define PI 3.14159265358979323846 /* pi */
//const double MAX_NUM = std::numeric_limits<float>::max();
////////////////////////////////////////////////////////////////////////////////
/// Matrix and LD utilities
////////////////////////////////////////////////////////////////////////////////
// [[Rcpp::export]]
arma::Mat<double> BMsubset(SEXP A, const arma::uvec & myrows, const arma::uvec & mycols ){
Rcpp::XPtr<BigMatrix> bigMat(A);
arma::Mat<double> X0((double*) bigMat->matrix(), bigMat->nrow(), bigMat->ncol(), false, false);
// consider saying true, perhaps is faster
// Subset matrix
if(myrows.n_elem == X0.n_rows){
X0=X0.cols(mycols);
}else if(mycols.n_elem == X0.n_rows){
X0=X0.rows(myrows);
}else{
X0=X0.submat(myrows,mycols);
}
return(X0);
}
// [[Rcpp::export]]
arma::vec upperTmat(const arma::mat mat){
arma::vec output((mat.n_cols*(mat.n_cols-1))/2);
arma::mat::const_iterator it = mat.begin() + mat.n_rows; //iterator at rows to skip in every step, starts at second column
long toSkipInVec = 0;
for(int i = 1; i < mat.n_cols; i++) //Starts with 1 to skip the diagonal
{
std::copy(it, it + i, output.begin() + toSkipInVec);
toSkipInVec += i;
it += mat.n_rows;
}
return output;
}
// [[Rcpp::export]]
arma::mat Xmvcenter(arma::mat X){
arma::mat newX(X.n_rows,X.n_cols);
for(int j=0; j<X.n_cols; j++){
newX.col(j) = (X.col(j) - arma::mean( X.col(j))) /arma::stddev( X.col(j));
}
return(newX);
}
// [[Rcpp::export]]
arma::mat LDrelative(SEXP A, arma::uvec m, bool debug = false){
Rcpp::XPtr<BigMatrix> bigMat(A);
if(bigMat->matrix_type() !=8) stop("Big matrix is not of type double");
// Read the genome matrix from address
arma::Mat<double> X((double*) bigMat->matrix(), bigMat->nrow(), bigMat->ncol(), false, false);
X=X.cols(m);
// mean and var center for LD calculation
X=Xmvcenter(X);
if(debug) cout << X << endl;
// Get the relative LD for the proposals
arma::mat R2 = arma::trans(X)*X ;
if(debug) cout << R2 << endl;
R2 = R2/ arma::sum(upperTmat(R2));
if(debug) cout << arma::sum(upperTmat(R2)) << endl;
return(R2);
}
arma::mat LDrelative(arma::mat X, bool debug = false){
// mean and var center for LD calculation
X=Xmvcenter(X);
if(debug) cout << X << endl;
// Get the relative LD for the proposals
arma::mat R2 = arma::trans(X)*X ;
if(debug) cout << R2 << endl;
R2 = R2/ arma::sum(upperTmat(R2));
if(debug) cout << arma::sum(upperTmat(R2)) << endl;
return(R2);
}
////////////////////////////////////////////////////////////////////////////////
/// Fitness functions
////////////////////////////////////////////////////////////////////////////////
/// Fitness class
class FITNESS{
private:
int mode;
public:
FITNESS(int m=1){
mode=m;
};
// fitness functions
double w(const double &s , const int &x, const double e=2){
switch(mode){
case 1: // multiplicative
return 1 + (s * x) ;
break;
case 2: // additive
return (s * x) ;
break;
case 3: // inverse multiplicative
// return 1 / (1 + s * x);
return pow((1 + s),x);
break;
default: // multiplicative
return 1 - (s * x) ;
break;
}
}
// void operator +*=(double w, double s,int x,int mode) // operator not needed unless class
void wupdate(double &prevw, const double &s,const int &x) {
switch(mode){
case 2: // additive
prevw= prevw + w(s,x);
break;
default: // additive
prevw= prevw * w(s,x);
break;
}
}
};
/// Expectation functions
// [[Rcpp::export]]
arma::colvec Ey_go(const arma::Mat<double> & X, // careful arma::mat default is double
const arma::colvec & s,
const int & mode,
double epi=1,
double ref=1
){
// Initialize class and set fitness model
FITNESS fit(mode);
// Initialize vector of distribution means
arma::colvec myprod(X.n_rows);
// myprod.fill(1);
myprod.fill(ref); // IMPORTANT
int i,j;
for (i = 0; i < X.n_cols; i ++) {
for( j=0; j < X.n_rows ; j++){
fit.wupdate(myprod(j),s(i),X(j,i)); // works because these expressions generate a reference
}
}
for( j=0; j<X.n_rows; j++) if(myprod(j)<0) myprod(j)=MIN_NUM; // **WARNING** this is necessary for non-NaN likelihood
if(epi!=1) myprod=pow(myprod,epi); // probably not very efficient
return(myprod);
}
////////////////////////////////////////////////////////////////////////////////
/// Likelihood, Probabilities, Proposals
////////////////////////////////////////////////////////////////////////////////
// [[Rcpp::export]]
double runif_reflect(double minhere,double maxhere,double min,double max){
// int counter=1;
double newval;
if( min == max){
newval= min; // if values want to be kept constant
}else{
newval =Rcpp::runif(1,minhere,maxhere)(0);
if(newval<min){newval = (min-newval) + min;}
else if(newval>max){newval = max- (newval-max);}
}
if(newval < min || newval>max){ // Check if it is out of bounds
newval=(max-min)/2;
}
return(newval);
}
class GPROPOSAL{
private:
double b; double bmin; double bmax;
double a; double amin; double amax;
double p; double pmin=0; double pmax=1;
double mu; double mumin; double mumax;
double epi; double epimin; double epimax;
double svar; double svarmin; double svarmax;
double ss; double ssmin; double ssmax;
int nupdates=1;
bool verbose;
double bw;
public:
GPROPOSAL(
double b_=0.5,double bmin_=0,double bmax_=1,
double a_=0.1,double amin_=0,double amax_=1,
double p_=0.5,
double mu_=1,double mumin_=0, double mumax_=50,
double epi_=1,double epimin_=0, double epimax_=5,
double svar_=0.5,double svarmin_=0, double svarmax_=5,
double ss_=0.1,double ssmin_=0, double ssmax_=1,
double bw_=0.1,
bool verbose_=false
){
b=b_;bmin=bmin_;bmax=bmax_;
a=a_;amin=amin_;amax=amax_;
p=p_;
mu=mu_;mumin=mumin_;mumax=mumax_;
epi=epi_;epimin=epimin_;epimax=epimax_;
svar=svar_;svarmin=svarmin_;svarmax=svarmax_;
ss=ss_;ssmin=ssmin_;ssmax=ssmax_;
bw=bw_;
verbose=verbose_;
}
void setupdatesnum(int ups){nupdates=ups;}
void setverbose(bool verbose_){verbose=verbose_;}
void printatributes(){
cout <<"bw = " << bw << endl;
cout <<"b = " << b << " [" << bmin << " " << bmax << "]" << endl;
cout <<"a = " << a << " [" << amin << " " << amax << "]" << endl;
cout <<"p = " << p << " [" << pmin << " " << pmax << "]" << endl;
cout <<"mu = " << mu << " [" << mumin << " " << mumax << "]" << endl;
cout <<"epi = " << epi << " [" << epimin << " " << epimax << "]" << endl;
cout <<"svar = " << svar << " [" << svarmin << " " << svarmax << "]" << endl;
cout <<"ss = " << ss << " [" << ssmin << " " << ssmax << "]" << endl;
}
arma::vec fn(arma::vec g){
// New proposal
arma::vec news=g;
// Update one position
double minhere,maxhere;
double newval;
if(verbose) cout << "Loop to substitute position" << endl;
for(int j=0; j< nupdates; j++){
int randomIndex = rand() % g.size();
switch(randomIndex){
if(verbose) cout << g(randomIndex) << endl;
case 0:
minhere=g(randomIndex)- (bw *(bmax-bmin)) ;
maxhere=g(randomIndex)+ (bw *(bmax-bmin));
newval= runif_reflect(minhere,maxhere,bmin,bmax); break;
case 1:
minhere=g(randomIndex)- (bw *(amax-amin)) ;
maxhere=g(randomIndex)+ (bw *(amax-amin));
newval= runif_reflect(minhere,maxhere,amin,amax); break;
case 2:
minhere=g(randomIndex)- (bw *(pmax-pmin)) ;
maxhere=g(randomIndex)+ (bw *(pmax-pmin));
newval= runif_reflect(minhere,maxhere,pmin,pmax); break;
case 3:
minhere=g(randomIndex)- (bw *(mumax-mumin)) ;
maxhere=g(randomIndex)+ (bw *(mumax-mumin));
newval= runif_reflect(minhere,maxhere,mumin,mumax); break;
case 4:
minhere=g(randomIndex)- (bw *(epimax-epimin)) ;
maxhere=g(randomIndex)+ (bw *(epimax-epimin));
newval= runif_reflect(minhere,maxhere,epimin,epimax); break;
case 5:
minhere=g(randomIndex)- (bw *(svarmax-svarmin)) ;
maxhere=g(randomIndex)+ (bw *(svarmax-svarmin));
newval= runif_reflect(minhere,maxhere,svarmin,svarmax); break;
case 6:
minhere=g(randomIndex)- (bw *(ssmax-ssmin)) ;
maxhere=g(randomIndex)+ (bw *(ssmax-ssmin));
newval= runif_reflect(minhere,maxhere,ssmin,ssmax); break;
}
if(verbose) cout << newval << endl;
news(randomIndex) = newval;
}
if(verbose) cout << "End loop" << endl;
return(news);
}
};
// [[Rcpp::export]]
arma::mat test_GPROPOSAL(double b=1,
double a=1,
double p=1,
double mu=1,
double epi=1,
double svar=1,
double ss=0.1,
int iter=7000,
bool verbose = false){
arma::vec g(7);
g(0)= b;
g(1)= a;
g(2)= p;
g(3)= mu;
g(4)= epi;
g(5)= svar;
g(6)= ss;
GPROPOSAL GProp; // mode 1 = uniform ; mode 2 = LD
GProp.setverbose(verbose);
GProp.printatributes();
// cout << "Original " << endl;
// cout << g << endl;
// cout << "Testing proposals "<< endl;
arma::mat res(7,iter);
res.col(0)=g;
cout << "Runing several proposals "<< endl;
for(int i=1; i<iter; i++){
g=GProp.fn(g);
res.col(i)=g;
}
return(res);
}
//////////////////////////////////////////////////////////////////////////////
// Selection proposal with LD
class PROPOSAL {
private:
double bw;
int nupdates;
double min;
double max;
int mode;
bool verbose;
arma::mat R; // for LD implementatioon
public:
PROPOSAL(
int nupdates_,
int mode_=1
){
nupdates=nupdates_;
mode=mode_;
verbose=false;
}
PROPOSAL(
double bw_,
int nupdates_,
double min_,
double max_,
int mode_=1,
bool verbose_= false
){
bw=bw_;nupdates=nupdates_;min=min_;max=max_;mode=mode_;verbose=verbose_;
// initialize R2 for default cases
arma::mat onemat(1,1);
onemat.fill(1);
R=onemat;
}
PROPOSAL(arma::mat R2,
double bw_,
int nupdates_,
double min_,
double max_,
int mode_=1,
bool verbose_= false
){
bw=bw_;nupdates=nupdates_;min=min_;max=max_;mode=mode_;verbose=verbose_;
// initialize R2 for default cases
R=R2;
}
void printatributes(){
cout <<"bw = " << bw << endl;
cout <<"nupdates = " <<nupdates << endl;
cout <<"min = " << min << endl;
cout <<"max = " <<max << endl;
cout <<"mode = " <<mode << endl;
cout <<"verbose = " <<verbose << endl;
}
arma::vec fn(arma::vec s){
switch(mode){
case 1:
return update(s);
break;
case 2:
return updateLD(s);
break;
default:
return update(s);
break;
}
}
arma::vec fn(arma::vec s, double svar){
switch(mode){
case 1:
return update(s);
break;
case 2:
return updateLD(s);
case 3:
return updatelog(s,svar);
break;
default:
return update(s);
break;
}
}
arma::vec update(arma::vec s){
/*
* Make proposal change of one or more selection coefficients
* from a previous vector.
* Do not allow to go further thana bandwidth of 0.1
*/
// New proposal
arma::colvec news=s;
// Update one position
double minhere,maxhere,newval;
if(verbose) cout << "Loop to substitute position" << endl;
for(int j=0; j< nupdates; j++){
int randomIndex = rand() % s.size();
minhere=s(randomIndex)-bw;
maxhere=s(randomIndex)+bw;
newval = runif_reflect(minhere,maxhere,min,max);
news(randomIndex) = newval;
}
if(verbose) cout << "End loop" << endl;
return(news);
}
arma::vec updatelog(arma::vec s,double svar){
// New proposal
arma::colvec news= s;
// Update one position
double meanhere,newval;
if(verbose) cout << "Loop to substitute position" << endl;
for(int j=0; j< nupdates; j++){
int randomIndex = rand() % s.size();
meanhere=log(1+s(randomIndex));
if(std::isinf(meanhere)){
meanhere= (max-min)/2;
}
newval = Rcpp::rnorm(1,0,svar)(0);
news(randomIndex) = exp(newval)-1;
if(verbose) cout << newval << endl;
if(verbose) cout << news(randomIndex) << endl;
}
if(verbose) cout << "End loop" << endl;
return(news);
}
arma::vec updateLD(arma::vec s){
// New proposal
arma::colvec news=s;
// Update one position
double minhere,maxhere,newval;
if(verbose) cout << "Loop to substitute position" << endl;
int randomIndex = rand() % s.size();
minhere=s(randomIndex)-bw;
maxhere=s(randomIndex)+bw;
newval = runif_reflect(minhere,maxhere,min,max);
news(randomIndex) = newval;
double diff = news(randomIndex) - s(randomIndex);
if(verbose) cout << "Difference with original value = " << diff << endl;
for(int i=0; i<s.n_elem & i!= randomIndex; i++){
news(i) -= diff * R(randomIndex,i) ;
if(verbose) cout << news(i) << endl;
if(news(i) < min) news(i) =min+abs(news(i) -min);
if(news(i) > max) news(i) =max-abs(news(i) -max);
}
return(news);
}
};
// [[Rcpp::export]]
arma::vec PropoS(int nupdates,double svar = 0.5){
arma::vec s(nupdates);
s.fill(0);
PROPOSAL ps(nupdates,3);
return(ps.fn(s,svar));
}
// [[Rcpp::export]]
void test_ProposalsLD(
arma::mat X,
double min=0,
double max=1,
double bw=0.1,
int nupdates=1,
int mode=2,
int iterations=1,
bool verbose=true
){
arma::vec s = Rcpp::runif(X.n_cols,0,1);
PROPOSAL Prop(LDrelative(X),bw,nupdates,min,max,2,verbose); // mode 1 = uniform ; mode 2 = LD
cout << "Original " << endl;
// cout << s << endl;
cout << "Testing proposals under mode = "<< mode << endl;
for(int i=0; i<3; i++){
s=Prop.fn(s);
// cout << s << endl;
}
}
// [[Rcpp::export]]
arma::vec call_Proopsals(
arma::vec s,
int m=10,
double min=0,
double max=1,
double bw=0.1,
int nupdates=1,
int mode=1,
bool verbose=true){
PROPOSAL Prop(bw,nupdates,min,max,mode,verbose); // mode 1 = uniform ; mode 2 = LD
Prop.printatributes();
return Prop.fn(s);
}
// [[Rcpp::export]]
void test_Proposals(int m=10,
double min=0,
double max=1,
double svar=0.1,
int nupdates=1,
int mode=1,
int iterations=3,
bool verbose=true
){
arma::vec s = PropoS(m,svar);
PROPOSAL Prop(svar,nupdates,min,max,mode,verbose); // mode 1 = uniform ; mode 2 = LD
Prop.printatributes();
cout << "Testing proposals under mode = "<< mode << endl;
for(int i=0; i<3; i++){
s=Prop.fn(s);
cout << s << endl;
}
}
////////////////////////////////////////////////////////////////////////////////
class PRIOR{
public:
double min;
double max;
double mean;
double svar;
double ss;
int mode;
// Constructors
// PRIOR(double min_=0,double max_=1,
// double mean_=0,double variance_=1,
// int mode_=1){
// min=min_; max=max_;mean=mean_; variance=variance_; mode=mode_; };
PRIOR(double par1=0,double par2=1, int mode_=1){
mode=mode_;
switch(mode){
case 1: // moc mode, return 1
break;
case 2: // true uniform
min=par1;
max=par2;
break;
case 3: // log +1 normal
mean=par1;
svar=par2;
break;
case 4: // log +1 mixture normal with sparcity
svar=par1;
ss=par2;
break;
default:
min=0;max=1;mean=0,svar=0.5;
break;
}
}
void printatributes(){
cout <<"min = " << min << endl;
cout <<"max = " <<max << endl;
cout <<"s variance = " <<svar << endl;
cout <<"mode = " <<mode << endl;
}
// Prior functions
double uniform(const arma::colvec & s){
double L= 0;
int N=s.n_elem;
for(int i=0;i<N ;i++){
L+= R::dunif(s(i),min,max,true);
}
return L;
}
double loggaussian(const arma::colvec & s, double svar){
// int n=s.n_elem;
arma::vec x = log(1+s);
// double L = -.5*n*log(2*PI) -.5*n*log(svar) -(1/(2*svar))*sum(arma::pow((x-mean),2));
double L=0;
for(int i = 0; i<s.n_elem; i++){
L+= R::dnorm(x(i),0,svar,true);
}
return L;
}
double logmixgaussian(const arma::colvec & s, double svar, double ss){
arma::vec x = log(1+s);
double L=0;
for(int i = 0; i<s.n_elem; i++){
// L+= R::dnorm(x(i),0,svar,true);
if(x(i)==0){
L += log(ss + (1-ss) * R::dnorm(x(i),0,svar,false)) ;
}else{
L += (1-ss) * R::dnorm(x(i),0,svar,true);
}
}
return L;
}
// Prior distributor
double fn(const arma::colvec & s){
switch(mode){
case 1: // moc mode, return 1
return 1.0; break;
case 2: // true uniform
return uniform(s); break;
default:
return 1.0; break;
}
}
double fn(const arma::colvec & s,const double & svar,const double & ss){
switch(mode){
case 1: // moc mode, return 1
return 1.0; break;
case 2: // true uniform
return uniform(s); break;
case 3:
return loggaussian(s,svar); break;
case 4:
return logmixgaussian(s,svar,ss); break;
default:
return 1.0; break;
}
}
};
// [[Rcpp::export]]
void test_Prior(int m=10,
double min=0,
double max=1,
double mean=0,
double variance=1,
double sparsity=0.1,
int mode=1
){
arma::vec s;
if(mode==1){
s = exp( Rcpp::rnorm(m,0,variance) ) - 1;
}else{
s = Rcpp::runif(m,0,1);
}
cout << s << endl;
cout << "Prior mode = 1" << endl;
PRIOR Pri; // mode 1 = uniform moc
cout << Pri.fn(s) << endl;
cout << "Prior mode = 2" << endl;
PRIOR Pri2(min,max,2); // mode 1 = uniform moc
cout << Pri2.fn(s) << endl;
cout << "Prior mode = 3" << endl;
PRIOR Pri3(mean,variance,3); // mode 1 = uniform moc
cout << Pri3.fn(s,variance,sparsity) << endl;
cout << "Prior mode = 4" << endl;
PRIOR Pri4(mean,variance,4); // mode 1 = uniform moc
cout << Pri3.fn(s,variance,sparsity) << endl;
}
////////////////////////////////////////////////////////////////////////////////
// [[Rcpp::export]]
arma::vec hsub(const arma::vec & h){
arma::vec hunique = unique(h);
arma::vec hpos(h.n_elem);
for(int i=0; i<h.n_elem;i++){
for(int j=0; j< hunique.n_elem;j++){
if(h(i) == hunique(j)) hpos(i) = j;
}
}
return(hpos);
}
// [[Rcpp::export]]
double trialLL(double hs=10){
arma::vec e(20);
e.fill(2);
return e(hs);
}
// [[Rcpp::export]]
double LLGaussMix(double y,double e,double v,double p){
double LL;
if(y==0){
LL = p + (1-p) * R::pnorm(0,e,v,true,false) ;
}else{
LL = (1-p) * R::dnorm(y,e,v,false);
}
return log(LL);
}
////////////////////////////////////////////////////////////////////////////////
/// Likelihood class
class LIKELIHOOD{
private:
int mode;
bool TEST;
bool verbose;
arma::vec y;
arma::vec h;
arma::Mat<double> X;
public:
//Constructor
LIKELIHOOD(
const arma::vec y_,
const arma::vec h_,
const arma::Mat<double> X_, // careful the arma::mat by default is double
int mode_=1,
bool TEST_=false,
bool verbose_=false){
y=y_; h=h_; X=X_;
mode=mode_;TEST=TEST_;verbose=verbose_;
}
void printatributes(){
cout <<"verbose = " << verbose << endl;
cout <<"TEST = " <<TEST << endl;
cout <<"mode = " <<mode << endl;
}
// calling function
double fn(const arma::vec & s, double b,double a, double p,double mu=1,double epi=1){
if(TEST) return 1.0;
else return LLikfn(s,b,a,p,mu,epi);
}
// likelihood function
double LLikfn(const arma::vec & s, double b,double a, double p,double mu=1,double epi=1){
/*
* Summed log likelihood of all genotypes following each a Gammma distribution
* inferred from sampling variance, mean observed genotype and selection a
* set of selection coefficients
*/
// Precompute all expectations of mean fitness values given genotypes X and s.
if(verbose) cout<< "Precompute expectations..."<< endl;
arma::vec e= Ey_go(X,s,mode,epi);
// cout << e<< endl; // for debugging
arma::vec v= a+abs(e*b);
// cout << v<< endl; // for debugging
// Utilities
arma::vec hs=hsub(h);
// Sum likelihood over all genotypes
if(verbose) cout<< "Calculating likelihood over all genotypes..."<< endl;
int i;
double L=0;
double LL;
for(i=0; i< y.n_elem ; i ++){
LL= LLGaussMix(y(i)/mu,e(hs(i)),v(hs(i)),p);
if(verbose and std::isinf(LL)){
cout << "---" << endl;
cout << i << endl;
cout << y(i) << " "<< e(hs(i)) << " "<< v(hs(i)) <<" "<< p << endl;
cout << LL << endl;
}
L += LL;
}
return(L);
}
};
// [[Rcpp::export]]
void test_Likelihood(
SEXP A,
arma::vec y,
arma::vec h,
arma::vec s,
double b,
double a,
double p,
double mu,
arma::uvec m,
arma::uvec n,
int Fitnessmode=1,
bool TEST=false,
bool verbose=true
){
arma::Mat<double> X=BMsubset(A,n,m);
cout << "Selection coefficients" << endl;
cout << s << endl;
cout << "Likelihood" << endl;
LIKELIHOOD LL(y,h,X,Fitnessmode,TEST,verbose);
cout << LL.fn(s,b,a,p,mu) << endl;
}
// [[Rcpp::export]]
void test_Likelihoodall(
SEXP A,
arma::vec y,
arma::vec h,
arma::vec s,
double b,
double a,
double p,
arma::uvec m,
arma::uvec n,
int mode=1,
bool verbose=true
){
arma::Mat<double> X=BMsubset(A,n,m);
cout << "Selection coefficients" << endl;
cout << s << endl;
cout << "Likelihood mode = 1 | TEST = false" << endl;
LIKELIHOOD LL1(y,h,X,mode,false,verbose);
cout << LL1.fn(s,b,a,p) << endl;
cout << "Likelihood mode = 1 | TEST = true" << endl;
LIKELIHOOD LL2(y,h,X,mode,true,verbose);
cout << LL2.fn(s,b,a,p) << endl;
cout << "Likelihood mode = 2 " << endl;
LIKELIHOOD LL3(y,h,X,2,false,verbose);
cout << LL3.fn(s,b,a,p) << endl;
cout << "Likelihood mode = 3 " << endl;
LIKELIHOOD LL4(y,h,X,3,false,verbose);
cout << LL4.fn(s,b,a,p) << endl;
}
////////////////////////////////////////////////////////////////////////////////
/// MCMC
////////////////////////////////////////////////////////////////////////////////
// [[Rcpp::export]]
List napMCMCC(
const arma::vec & y,
const arma::vec & h,
SEXP A, // instead of arma::mat X,
const arma::colvec & s,
const arma::uvec m, // the positions of SNPs
const arma::uvec n , // the positions of individuals
double b=0.5, double bmin=0, double bmax=1.0, // the mean variance transformation
double a=0.1, double amin=0.0, double amax=1, // the intercept of variance
double p=0.5, // the proportion of zero values
double mu=1.0, double mumin=0,double mumax=10,
double epi=1.0, double epimin=1.0,double epimax=1.0,
double svar=0.1, double svarmin=0,double svarmax=1,
double ss=0.1, double ssmin=0,double ssmax=1,
double bw= 0.1, // the maximum size of jumps of global parameters
int nupdates=1,
double min=1e-6,
double max=1-1e-6 ,
double iterations = 1e4,
bool TEST =false ,
bool verbose=false,
bool debug=false,
int Fitnessmode=1,