forked from rasbt/LLMs-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
93 lines (70 loc) · 2.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from pathlib import Path
import sys
import tiktoken
import torch
import chainlit
from previous_chapters import (
generate,
GPTModel,
text_to_token_ids,
token_ids_to_text,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_model_and_tokenizer():
"""
Code to load a GPT-2 model with finetuned weights generated in chapter 7.
This requires that you run the code in chapter 7 first, which generates the necessary gpt2-medium355M-sft.pth file.
"""
GPT_CONFIG_355M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Shortened context length (orig: 1024)
"emb_dim": 1024, # Embedding dimension
"n_heads": 16, # Number of attention heads
"n_layers": 24, # Number of layers
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
tokenizer = tiktoken.get_encoding("gpt2")
model_path = Path("..") / "01_main-chapter-code" / "gpt2-medium355M-sft.pth"
if not model_path.exists():
print(
f"Could not find the {model_path} file. Please run the chapter 7 code "
" (ch07.ipynb) to generate the gpt2-medium355M-sft.pt file."
)
sys.exit()
checkpoint = torch.load(model_path, weights_only=True)
model = GPTModel(GPT_CONFIG_355M)
model.load_state_dict(checkpoint)
model.to(device)
return tokenizer, model, GPT_CONFIG_355M
def extract_response(response_text, input_text):
return response_text[len(input_text):].replace("### Response:", "").strip()
# Obtain the necessary tokenizer and model files for the chainlit function below
tokenizer, model, model_config = get_model_and_tokenizer()
@chainlit.on_message
async def main(message: chainlit.Message):
"""
The main Chainlit function.
"""
torch.manual_seed(123)
prompt = f"""Below is an instruction that describes a task. Write a response
that appropriately completes the request.
### Instruction:
{message.content}
"""
token_ids = generate( # function uses `with torch.no_grad()` internally already
model=model,
idx=text_to_token_ids(prompt, tokenizer).to(device), # The user text is provided via as `message.content`
max_new_tokens=35,
context_size=model_config["context_length"],
eos_id=50256
)
text = token_ids_to_text(token_ids, tokenizer)
response = extract_response(text, prompt)
await chainlit.Message(
content=f"{response}", # This returns the model response to the interface
).send()