Skip to content

Latest commit

 

History

History
97 lines (71 loc) · 2.85 KB

README.md

File metadata and controls

97 lines (71 loc) · 2.85 KB

PPI-Context

Contextualization of protein-protein interaction databases by cell line

Clone repository

$ git clone https://github.com/montilab/ppi-context

Install requirements

$ cd ppi-context
$ pip install -r requirements.txt

The data

If you just want the data it’s easy to load into R…

$ R
ppi <- read.delim("data/v_1_00/PPI-Context.txt", header=TRUE, sep="\t", stringsAsFactors=FALSE)
data.frame(sort(table(ppi$cell_name), decreasing=TRUE)) %>%
set_colnames(c("var", "freq")) %>%
head(30) %>%
ggbarplot(x="var", y="freq", fill="freq") +
labs(title="", x="Cell Line Name", y="PPI") +
scale_fill_viridis_c(option="inferno", begin=0, end=0.8) + 
theme(legend.position="none",
      axis.text.x=element_text(angle=45, hjust=1, size=12, face="bold"))

Pre-processing the data

| PPI - Context (v1.0)
usage: ppictx.py [-h] [-r] [-d]
                   [-fh PATH_HIPPIE] 
                   [-fp PATH_PUBTATOR]
                   [-fc PATH_CELLOSAURUS]

optional arguments:
  -h, --help            show this help message and exit
  -r, --run             run pipeline
  -d, --download        download raw data first
  -fh PATH_HIPPIE       path to downloaded Hippie data (optional)
  -fp PATH_PUBTATOR     path to downloaded Pubtator data (optional)
  -fc PATH_CELLOSAURUS  path to downloaded Cellosaurus data (optional)

In most cases you will need to download the latest bulk data first and then process it…

$ python ppictx.py --download --run
| PPI - Context (v1.0)
| Downloading raw data...
| Processing raw data
  ~ [PPI]
  ~ [PID -> CLA]
  ~ [CLA -> CID]
  ~ [PPI -> PID -> CLA -> CID]

In other cases, you might have the previous versions of the data to process…

$ python ppictx.py --run \
                   -fh path/to/HIPPIE.mitab \
                   -fp path/to/PUBTATOR.gz \
                   -fc path/to/CELLOSAURUS.txt

Special considerations

  • Cell lines that are primarily used in research due to their efficiency as an expression vector (e.g. HeLa, HEK, CHO, Sf9) may not be useful representations of cell-specific protein dynamics. However it may be useful to filter out PPIs annotated with these cell lines.

  • Cellosaurus contains synonymous cell lines, therefore some annotations such as HEK (CVCL_M624) and HEK293 (CVCL_0045) refer to the same cell line. Users should be aware of synonymous cell lines relevant to their interests and filter accordingly.

Cite

Federico A, Monti S (2021) Contextualized Protein-Protein Interactions. Patterns. https://doi.org/10.1016/j.patter.2020.100153.