-
Notifications
You must be signed in to change notification settings - Fork 0
/
kb_no_exc.ml
658 lines (565 loc) · 20.4 KB
/
kb_no_exc.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
let print_string _ = ()
let print_int _ = ()
let print_newline _ = ()
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: terms.ml 2553 1999-11-17 18:59:06Z xleroy $ *)
(****************** Term manipulations *****************)
type term =
| Var of int
| Term of string * term list
let rec union l1 l2 =
match l1 with
| [] -> l2
| a :: r -> if List.mem a l2 then union r l2 else a :: union r l2
let rec vars = function
| Var n -> [ n ]
| Term (_, l) -> vars_of_list l
and vars_of_list = function
| [] -> []
| t :: r -> union (vars t) (vars_of_list r)
let rec substitute subst = function
| Term (oper, sons) -> Term (oper, List.map (substitute subst) sons)
| Var n as t -> ( try List.assoc n subst with Not_found -> t)
(* Term replacement: replace M u N is M[u<-N]. *)
let rec replace m u n =
match u, m with
| [], _ -> n
| i :: u, Term (oper, sons) -> Term (oper, replace_nth i sons u n)
| _ -> failwith "replace"
and replace_nth i sons u n =
match sons with
| s :: r -> if i = 1 then replace s u n :: r else s :: replace_nth (i - 1) r u n
| [] -> failwith "replace_nth"
(* Term matching. *)
let rec fold_left2_opt f accu l1 l2 =
match l1, l2 with
| [], [] -> Some accu
| a1 :: l1, a2 :: l2 -> (
match f accu a1 a2 with
| None -> None
| Some accu' -> fold_left2_opt f accu' l1 l2)
| _, _ -> invalid_arg "List.fold_left2"
let rec match_rec subst t1 t2 =
match t1, t2 with
| Var v, _ ->
if List.mem_assoc v subst
then if t2 = List.assoc v subst then Some subst else None
else Some ((v, t2) :: subst)
| Term (op1, sons1), Term (op2, sons2) ->
if op1 = op2 then fold_left2_opt match_rec subst sons1 sons2 else None
| _ -> None
let matching term1 term2 = match_rec [] term1 term2
(* A naive unification algorithm. *)
let compsubst subst1 subst2 =
List.map (fun (v, t) -> v, substitute subst1 t) subst2 @ subst1
let rec occurs n = function
| Var m -> m = n
| Term (_, sons) -> List.exists (occurs n) sons
let rec unify term1 term2 =
match term1, term2 with
| Var n1, _ ->
if term1 = term2
then []
else if occurs n1 term2
then failwith "unify"
else [ n1, term2 ]
| term1, Var n2 -> if occurs n2 term1 then failwith "unify" else [ n2, term1 ]
| Term (op1, sons1), Term (op2, sons2) ->
if op1 = op2
then
List.fold_left2
(fun s t1 t2 -> compsubst (unify (substitute s t1) (substitute s t2)) s)
[]
sons1
sons2
else failwith "unify"
(* We need to print terms with variables independently from input terms
obtained by parsing. We give arbitrary names v1,v2,... to their variables.
*)
let infixes = [ "+"; "*" ]
let rec pretty_term = function
| Var n ->
print_string "v";
print_int n
| Term (oper, sons) ->
if List.mem oper infixes
then
match sons with
| [ s1; s2 ] ->
pretty_close s1;
print_string oper;
pretty_close s2
| _ -> failwith "pretty_term : infix arity <> 2"
else (
print_string oper;
match sons with
| [] -> ()
| t :: lt ->
print_string "(";
pretty_term t;
List.iter
(fun t ->
print_string ",";
pretty_term t)
lt;
print_string ")")
and pretty_close = function
| Term (oper, _) as m ->
if List.mem oper infixes
then (
print_string "(";
pretty_term m;
print_string ")")
else pretty_term m
| m -> pretty_term m
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: equations.ml 2553 1999-11-17 18:59:06Z xleroy $ *)
(****************** Equation manipulations *************)
type rule =
{ number : int
; numvars : int
; lhs : term
; rhs : term
}
(* standardizes an equation so its variables are 1,2,... *)
let mk_rule num m n =
let all_vars = union (vars m) (vars n) in
let counter = ref 0 in
let subst =
List.map
(fun v ->
incr counter;
v, Var !counter)
(List.rev all_vars)
in
{ number = num; numvars = !counter; lhs = substitute subst m; rhs = substitute subst n }
(* checks that rules are numbered in sequence and returns their number *)
let check_rules rules =
let counter = ref 0 in
List.iter
(fun r ->
incr counter;
if r.number <> !counter then failwith "Rule numbers not in sequence")
rules;
!counter
let pretty_rule rule =
print_int rule.number;
print_string " : ";
pretty_term rule.lhs;
print_string " = ";
pretty_term rule.rhs;
print_newline ()
let pretty_rules rules = List.iter pretty_rule rules
(****************** Rewriting **************************)
(* Top-level rewriting. Let eq:L=R be an equation, M be a term such that L<=M.
With sigma = matching L M, we define the image of M by eq as sigma(R) *)
let reduce l m r =
match matching l m with
| Some s -> Some (substitute s r)
| None -> None
(* Test whether m can be reduced by l, i.e. m contains an instance of l. *)
let can_match l m =
match matching l m with
| Some _ -> true
| None -> false
let rec reducible l m =
can_match l m
||
match m with
| Term (_, sons) -> List.exists (reducible l) sons
| _ -> false
(* Top-level rewriting with multiple rules. *)
let rec mreduce rules m =
match rules with
| [] -> None
| rule :: rest -> (
match reduce rule.lhs m rule.rhs with
| Some _ as v -> v
| None -> mreduce rest m)
(* One step of rewriting in leftmost-outermost strategy,
with multiple rules. Fails if no redex is found *)
let rec mrewrite1 rules m =
match mreduce rules m with
| Some v -> v
| None -> (
match m with
| Var _ -> failwith "mrewrite1"
| Term (f, sons) -> Term (f, mrewrite1_sons rules sons))
and mrewrite1_sons rules = function
| [] -> failwith "mrewrite1"
| son :: rest -> (
try mrewrite1 rules son :: rest with Failure _ -> son :: mrewrite1_sons rules rest)
(* Iterating rewrite1. Returns a normal form. May loop forever *)
let rec mrewrite_all rules m =
try mrewrite_all rules (mrewrite1 rules m) with Failure _ -> m
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: orderings.ml 2553 1999-11-17 18:59:06Z xleroy $ *)
(*********************** Recursive Path Ordering ****************************)
type ordering =
| Greater
| Equal
| NotGE
let ge_ord order pair =
match order pair with
| NotGE -> false
| _ -> true
and gt_ord order pair =
match order pair with
| Greater -> true
| _ -> false
and eq_ord order pair =
match order pair with
| Equal -> true
| _ -> false
let rec rem_eq equiv x = function
| [] -> failwith "rem_eq"
| y :: l -> if equiv (x, y) then l else y :: rem_eq equiv x l
let diff_eq equiv (x, y) =
let rec diffrec = function
| ([], _) as p -> p
| h :: t, y -> (
try diffrec (t, rem_eq equiv h y)
with Failure _ ->
let x', y' = diffrec (t, y) in
h :: x', y')
in
if List.length x > List.length y then diffrec (y, x) else diffrec (x, y)
(* Multiset extension of order *)
let mult_ext order = function
| Term (_, sons1), Term (_, sons2) -> (
match diff_eq (eq_ord order) (sons1, sons2) with
| [], [] -> Equal
| l1, l2 ->
if List.for_all (fun n -> List.exists (fun m -> gt_ord order (m, n)) l1) l2
then Greater
else NotGE)
| _ -> failwith "mult_ext"
(* Lexicographic extension of order *)
let lex_ext order = function
| (Term (_, sons1) as m), (Term (_, sons2) as n) ->
let rec lexrec = function
| [], [] -> Equal
| [], _ -> NotGE
| _, [] -> Greater
| x1 :: l1, x2 :: l2 -> (
match order (x1, x2) with
| Greater ->
if List.for_all (fun n' -> gt_ord order (m, n')) l2
then Greater
else NotGE
| Equal -> lexrec (l1, l2)
| NotGE ->
if List.exists (fun m' -> ge_ord order (m', n)) l1 then Greater else NotGE
)
in
lexrec (sons1, sons2)
| _ -> failwith "lex_ext"
(* Recursive path ordering *)
let rpo op_order ext =
let rec rporec (m, n) =
if m = n
then Equal
else
match m with
| Var _ -> NotGE
| Term (op1, sons1) -> (
match n with
| Var vn -> if occurs vn m then Greater else NotGE
| Term (op2, sons2) -> (
match op_order op1 op2 with
| Greater ->
if List.for_all (fun n' -> gt_ord rporec (m, n')) sons2
then Greater
else NotGE
| Equal -> ext rporec (m, n)
| NotGE ->
if List.exists (fun m' -> ge_ord rporec (m', n)) sons1
then Greater
else NotGE))
in
rporec
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: kb.ml 2553 1999-11-17 18:59:06Z xleroy $ *)
(****************** Critical pairs *********************)
(* All (u,subst) such that N/u (&var) unifies with M,
with principal unifier subst *)
let rec super m = function
| Term (_, sons) as n -> (
let rec collate n = function
| [] -> []
| son :: rest ->
List.map (fun (u, subst) -> n :: u, subst) (super m son)
@ collate (n + 1) rest
in
let insides = collate 1 sons in
try ([], unify m n) :: insides with Failure _ -> insides)
| _ -> []
(* Ex :
let (m,_) = <<F(A,B)>>
and (n,_) = <<H(F(A,x),F(x,y))>> in super m n
==> [[1],[2,Term ("B",[])]; x <- B
[2],[2,Term ("A",[]); 1,Term ("B",[])]] x <- A y <- B
*)
(* All (u,subst), u&[], such that n/u unifies with m *)
let super_strict m = function
| Term (_, sons) ->
let rec collate n = function
| [] -> []
| son :: rest ->
List.map (fun (u, subst) -> n :: u, subst) (super m son)
@ collate (n + 1) rest
in
collate 1 sons
| _ -> []
(* Critical pairs of l1=r1 with l2=r2 *)
(* critical_pairs : term_pair -> term_pair -> term_pair list *)
let critical_pairs (l1, r1) (l2, r2) =
let mk_pair (u, subst) = substitute subst (replace l2 u r1), substitute subst r2 in
List.map mk_pair (super l1 l2)
(* Strict critical pairs of l1=r1 with l2=r2 *)
(* strict_critical_pairs : term_pair -> term_pair -> term_pair list *)
let strict_critical_pairs (l1, r1) (l2, r2) =
let mk_pair (u, subst) = substitute subst (replace l2 u r1), substitute subst r2 in
List.map mk_pair (super_strict l1 l2)
(* All critical pairs of eq1 with eq2 *)
let mutual_critical_pairs eq1 eq2 = strict_critical_pairs eq1 eq2 @ critical_pairs eq2 eq1
(* Renaming of variables *)
let rename n (t1, t2) =
let rec ren_rec = function
| Var k -> Var (k + n)
| Term (op, sons) -> Term (op, List.map ren_rec sons)
in
ren_rec t1, ren_rec t2
(************************ Completion ******************************)
let deletion_message rule =
print_string "Rule ";
print_int rule.number;
print_string " deleted";
print_newline ()
(* Generate failure message *)
let non_orientable (m, n) =
pretty_term m;
print_string " = ";
pretty_term n;
print_newline ()
let rec partition p = function
| [] -> [], []
| x :: l ->
let l1, l2 = partition p l in
if p x then x :: l1, l2 else l1, x :: l2
let rec get_rule n = function
| [] -> raise Not_found
| r :: l -> if n = r.number then r else get_rule n l
(* Improved Knuth-Bendix completion procedure *)
let kb_completion greater =
let rec kbrec j rules =
let rec process failures (k, l) eqs =
(* {[
print_string "***kb_completion "; print_int j; print_newline();
pretty_rules rules;
List.iter non_orientable failures;
print_int k; print_string " "; print_int l; print_newline();
List.iter non_orientable eqs;
]}
*)
match eqs with
| [] -> (
if k < l
then next_criticals failures (k + 1, l)
else if l < j
then next_criticals failures (1, l + 1)
else
match failures with
| [] -> rules (* successful completion *)
| _ ->
print_string "Non-orientable equations :";
print_newline ();
List.iter non_orientable failures;
failwith "kb_completion")
| (m, n) :: eqs ->
let m' = mrewrite_all rules m
and n' = mrewrite_all rules n
and enter_rule (left, right) =
let new_rule = mk_rule (j + 1) left right in
pretty_rule new_rule;
let left_reducible rule = reducible left rule.lhs in
let redl, irredl = partition left_reducible rules in
List.iter deletion_message redl;
let right_reduce rule =
mk_rule rule.number rule.lhs (mrewrite_all (new_rule :: rules) rule.rhs)
in
let irreds = List.map right_reduce irredl in
let eqs' = List.map (fun rule -> rule.lhs, rule.rhs) redl in
kbrec (j + 1) (new_rule :: irreds) [] (k, l) (eqs @ eqs' @ failures)
in
(* {[
print_string "--- Considering "; non_orientable (m', n');
]}
*)
if m' = n'
then process failures (k, l) eqs
else if greater (m', n')
then enter_rule (m', n')
else if greater (n', m')
then enter_rule (n', m')
else process ((m', n') :: failures) (k, l) eqs
and next_criticals failures (k, l) =
(*
{[
print_string "***next_criticals ";
print_int k; print_string " "; print_int l ; print_newline();
]}
*)
try
let rl = get_rule l rules in
let el = rl.lhs, rl.rhs in
if k = l
then process failures (k, l) (strict_critical_pairs el (rename rl.numvars el))
else
try
let rk = get_rule k rules in
let ek = rk.lhs, rk.rhs in
process failures (k, l) (mutual_critical_pairs el (rename rl.numvars ek))
with Not_found -> next_criticals failures (k + 1, l)
with Not_found -> next_criticals failures (1, l + 1)
in
process
in
kbrec
(* complete_rules is assumed locally confluent, and checked Noetherian with
ordering greater, rules is any list of rules *)
let kb_complete greater complete_rules rules =
let n = check_rules complete_rules
and eqs = List.map (fun rule -> rule.lhs, rule.rhs) rules in
let completed_rules = kb_completion greater n complete_rules [] (n, n) eqs in
print_string "Canonical set found :";
print_newline ();
pretty_rules (List.rev completed_rules)
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: kbmain.ml 7017 2005-08-12 09:22:04Z xleroy $ *)
(*
{[
let group_rules = [
{ number = 1; numvars = 1;
lhs = Term("*", [Term("U",[]); Var 1]); rhs = Var 1 };
{ number = 2; numvars = 1;
lhs = Term("*", [Term("I",[Var 1]); Var 1]); rhs = Term("U",[]) };
{ number = 3; numvars = 3;
lhs = Term("*", [Term("*", [Var 1; Var 2]); Var 3]);
rhs = Term("*", [Var 1; Term("*", [Var 2; Var 3])]) }
]
]}
*)
let geom_rules =
[ { number = 1; numvars = 1; lhs = Term ("*", [ Term ("U", []); Var 1 ]); rhs = Var 1 }
; { number = 2
; numvars = 1
; lhs = Term ("*", [ Term ("I", [ Var 1 ]); Var 1 ])
; rhs = Term ("U", [])
}
; { number = 3
; numvars = 3
; lhs = Term ("*", [ Term ("*", [ Var 1; Var 2 ]); Var 3 ])
; rhs = Term ("*", [ Var 1; Term ("*", [ Var 2; Var 3 ]) ])
}
; { number = 4
; numvars = 0
; lhs = Term ("*", [ Term ("A", []); Term ("B", []) ])
; rhs = Term ("*", [ Term ("B", []); Term ("A", []) ])
}
; { number = 5
; numvars = 0
; lhs = Term ("*", [ Term ("C", []); Term ("C", []) ])
; rhs = Term ("U", [])
}
; { number = 6
; numvars = 0
; lhs =
Term
( "*"
, [ Term ("C", [])
; Term ("*", [ Term ("A", []); Term ("I", [ Term ("C", []) ]) ])
] )
; rhs = Term ("I", [ Term ("A", []) ])
}
; { number = 7
; numvars = 0
; lhs =
Term
( "*"
, [ Term ("C", [])
; Term ("*", [ Term ("B", []); Term ("I", [ Term ("C", []) ]) ])
] )
; rhs = Term ("B", [])
}
]
let group_rank = function
| "U" -> 0
| "*" -> 1
| "I" -> 2
| "B" -> 3
| "C" -> 4
| "A" -> 5
| _ -> assert false
let group_precedence op1 op2 =
let r1 = group_rank op1 and r2 = group_rank op2 in
if r1 = r2 then Equal else if r1 > r2 then Greater else NotGE
let group_order = rpo group_precedence lex_ext
let greater pair =
match group_order pair with
| Greater -> true
| _ -> false
let _ =
for _ = 1 to 20 do
kb_complete greater [] geom_rules
done