-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
153 lines (110 loc) · 4.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 30 17:15:16 2020
@author: mooselumph
"""
import os, glob, re
import torch
import numpy as np
import pandas as pd
from types import SimpleNamespace
from models import DCGAN, DCGAN_SN, original, original_SN, original_SN2
def load_hparams(fname,defaults):
htable = pd.read_table(fname,sep='\s+')
assert 'name' in htable.columns.values, 'name must be specified'
args = []
for i in range(htable.shape[0]):
A = dict(htable.iloc[i,:])
for key in A:
if type(A[key]) == np.int64:
A[key] = int(A[key])
B = defaults.copy()
B.update(A)
h = SimpleNamespace(**B)
args.append(h)
return args
def get_models(fname_hparams,device,load_gen=True,load_discr=True,verbose=True):
# Set default params
defaults = {
'model': 'original',
'nz': 100,
'nc': 1,
'ndf': 64,
'ngf': 64,
'n_epochs': 500,
'batch_size': 100,
'lrD': 0.0001,
'lrG': 0.0001,
'beta1': 0.5,
'beta2': 0.999,
'nD': 1,
'nG': 2,
'image_interval': 20,
'save_interval': 20,
'score_interval': 20,
'dataroot': '/home/raynor/datasets/april/velocity/',
'modelroot': '/home/raynor/code/seismogan/saved/',
'load_name': 'None',
'load_step': -1,
}
# Load params from text file
hparams = load_hparams(fname_hparams,defaults)
for i,h in enumerate(hparams):
if os.path.exists(os.path.join(h.modelroot,h.name)):
print(f'{h.name} folder exists. Skipping.')
continue
if verbose:
print('Loading models')
if h.model == 'DCGAN':
gen = DCGAN.Generator(h.nz, h.nc, h.ngf, device) if load_gen else None
discr = DCGAN.Discriminator(h.nc, h.ndf, device) if load_discr else None
elif h.model == 'DCGAN_SN':
gen = DCGAN_SN.Generator(h.nz, h.nc, h.ngf, device) if load_gen else None
discr = DCGAN_SN.Discriminator(h.nc, h.ndf, device) if load_discr else None
elif h.model == 'original':
gen = original.Generator(h.nz, h.nc, h.ngf, device) if load_gen else None
discr = original.Discriminator(h.nc, h.ndf, device) if load_discr else None
elif h.model == 'original_SN':
gen = original_SN.Generator(h.nz, h.nc, h.ngf, device) if load_gen else None
discr = original_SN.Discriminator(h.nc, h.ndf, device) if load_discr else None
elif h.model == 'original_SN2':
gen = original_SN2.Generator(h.nz, h.nc, h.ngf, device) if load_gen else None
discr = original_SN2.Discriminator(h.nc, h.ndf, device) if load_discr else None
else:
raise NotImplementedError
if h.load_name.lower() != 'none':
fname = load_models(os.path.join(h.modelroot,h.load_name),gen,discr,h.load_step)
if verbose:
print (f'Loaded model: {fname}')
h.has_next = i+1 < len(hparams)
yield h,gen,discr
def save_models(save_dir,gen,discr,step):
name = f'checkpoint_{step}.pth'
torch.save({
'gen': gen.state_dict(),
'discr': discr.state_dict()
}, os.path.join(save_dir,name))
def load_models(load_dir,gen,discr,step=None):
if step != None and step >= 0:
name = f'checkpoint_{step}.pth'
else:
files = glob.glob(os.path.join(load_dir,"*.pth"))
files = [os.path.splitext(os.path.basename(f))[0] for f in files]
steps = [int(re.findall('checkpoint_(.+)',f)[0]) for f in files]
assert steps, "No models of the specified name were found."
step = max(steps)
name = f'checkpoint_{step}.pth'
fname = os.path.join(load_dir,name)
checkpoint = torch.load(fname)
if discr:
discr.load_state_dict(checkpoint['discr'])
if gen:
gen.load_state_dict(checkpoint['gen'])
return fname
class nullcontext():
def __enter__(self):
return None
def __exit__(self, exc_type, exc_value, traceback):
return False
def __bool__(self):
return False