forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_activation_weight_observer.py
153 lines (124 loc) · 5.25 KB
/
linear_activation_weight_observer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import Callable, Dict, Optional
import torch
from torch.utils._python_dispatch import return_and_correct_aliasing
from torchao.quantization.observer import AffineQuantizedObserverBase
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_5,
TorchAOBaseTensor,
)
__all__ = [
"LinearActivationWeightObservedTensor",
]
aten = torch.ops.aten
Tensor = torch.Tensor
class LinearActivationWeightObservedTensor(TorchAOBaseTensor):
"""
This subclass of Tensor is used in conjuction with a static calibration flow.
The flow is broken up into 3 parts;
1. Insert the LinearActivationWeightObservedTensor subclass into the model's nn.Linear layers
2. Run the model with a calibration dataset, the observer will record the min/max of the input and weight
3. quantize_ the model to static using the statistics recorded by the observer
This subclass wraps the original weight tensor on the nn.Linear layer. When forward is called, the observer
will first calculat statistics on BOTH the input and weight, and then run the linear op.
"""
original_weight_tensor: torch.Tensor
input_observer: Optional[AffineQuantizedObserverBase]
weight_observer: Optional[AffineQuantizedObserverBase]
def __new__(
cls,
original_weight_tensor: torch.Tensor,
input_observer: Optional[AffineQuantizedObserverBase] = None,
weight_observer: Optional[AffineQuantizedObserverBase] = None,
):
kwargs = {}
dtype = original_weight_tensor.dtype
kwargs["dtype"] = dtype
kwargs["requires_grad"] = False
kwargs["device"] = original_weight_tensor.device
shape = original_weight_tensor.shape
return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]
def __init__(
self,
original_weight_tensor: torch.Tensor,
input_observer: Optional[AffineQuantizedObserverBase] = None,
weight_observer: Optional[AffineQuantizedObserverBase] = None,
):
self.original_weight_tensor = original_weight_tensor
self.input_observer = input_observer
self.weight_observer = weight_observer
def __repr__(self):
return (
f"LinearActivationWeightObservedTensor(\n"
f"original_weight={self.original_weight_tensor}\n"
f"input_observer={self.input_observer.__class__.__name__ if self.input_observer else None}\n"
f"weight_observer={self.weight_observer.__class__.__name__ if self.weight_observer else None}\n)"
)
def __tensor_flatten__(self):
return ["original_weight_tensor"], [self.input_observer, self.weight_observer]
@classmethod
def __tensor_unflatten__(
cls,
tensor_data_dict: Dict[str, Tensor],
tensor_attributes,
outer_size,
outer_stride,
):
original_weight_tensor = tensor_data_dict["original_weight_tensor"]
(input_observer, weight_observer) = tensor_attributes
return cls(original_weight_tensor, input_observer, weight_observer)
@classmethod
def from_float(
cls,
original_weight_tensor: Tensor,
input_observer: Optional[AffineQuantizedObserverBase] = None,
weight_observer: Optional[AffineQuantizedObserverBase] = None,
):
return cls(original_weight_tensor, input_observer, weight_observer)
def _apply_fn_to_data(self, fn: Callable):
"""Applies a fn to the tensor component of the LinearActivationWeightObservedTensor"""
return self.__class__(
fn(self.original_weight_tensor),
self.input_observer,
self.weight_observer,
)
def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
return self._apply_fn_to_data(lambda x: x.to(**kwargs))
implements = LinearActivationWeightObservedTensor.implements
@implements(torch.nn.functional.linear)
def _(func, types, args, kwargs):
input_tensor, weight_tensor, bias = (
args[0],
args[1],
args[2] if len(args) > 2 else None,
)
if weight_tensor.input_observer is not None:
input_tensor = weight_tensor.input_observer(input_tensor)
if weight_tensor.weight_observer is not None:
weight_tensor = weight_tensor.weight_observer(
weight_tensor.original_weight_tensor
)
else:
weight_tensor = weight_tensor.original_weight_tensor
return torch.nn.functional.linear(input_tensor, weight_tensor, bias)
@implements(aten.detach.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.detach)
)
@implements(aten.clone.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.clone)
)
@implements(aten._to_copy.default)
def _(func, types, args, kwargs):
return return_and_correct_aliasing(
func,
args,
kwargs,
args[0].to(*args[1:], **kwargs)._apply_fn_to_data(torch.clone),
)
if TORCH_VERSION_AT_LEAST_2_5:
# Allow a model with LinearActivationQuantizedTensor weights to be loaded with `weights_only=True`
torch.serialization.add_safe_globals([LinearActivationWeightObservedTensor])