-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmddpg_agent.py
230 lines (174 loc) · 8.65 KB
/
mddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import random
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
import copy
import torch
from collections import namedtuple, deque
from model_new import Actor_net, Critic_net
class Actor:
def __init__(self,
device,
agent_ID,
state_size, action_size, random_seed,
memory, noise,
lr, weight_decay):
self.DEVICE = device
self.agent_ID = agent_ID
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
# Hyperparameters
self.LR = lr
self.WEIGHT_DECAY = weight_decay
# Actor Network (w/ Target Network)
self.local = Actor_net(state_size, action_size, random_seed).to(self.DEVICE)
self.target = Actor_net(state_size, action_size, random_seed).to(self.DEVICE)
self.optimizer = optim.Adam(self.local.parameters(), lr=self.LR)
# Replay memory
self.memory = memory
# Noise process
self.noise = noise
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(self.DEVICE)
self.local.eval()
with torch.no_grad():
action = self.local(state).cpu().data.numpy()
self.local.train()
if add_noise:
action += self.noise.sample()
return np.clip(action, -1, 1)
def step(self, state, action, reward, next_state, done):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
def reset(self):
self.noise.reset()
class Critic:
def __init__(self,
device,
state_size, action_size, random_seed,
gamma, TAU, lr, weight_decay):
self.DEVICE = device
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
# Hyperparameters
self.GAMMA = gamma
self.TAU = TAU
self.LR = lr
self.WEIGHT_DECAY = weight_decay
# Critic Network (w/ Target Network)
self.local = Critic_net(state_size, action_size, random_seed).to(self.DEVICE)
self.target = Critic_net(state_size, action_size, random_seed).to(self.DEVICE)
self.optimizer = optim.Adam(self.local.parameters(), lr=self.LR, weight_decay=self.WEIGHT_DECAY)
def step(self, actor, memory):
# Learn, if enough samples are available in memory
experiences = memory.sample()
if not experiences:
return
self.learn(actor, experiences)
def learn(self, actor, experiences):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = actor.target(next_states)
Q_targets_next = self.target(next_states, actions_next)
# Compute Q targets for current states
Q_targets = rewards + (self.GAMMA * Q_targets_next * (1 - dones)) #more accurate as it uses the current reward, that is already known and adds the predicted Q-value for the next state action pair
# Compute critic loss
Q_expected = self.local(states, actions)#predicted Q-value (state-action value of next state with predicted actions for next state). this ONLY relies on the prediction. No element that is known
critic_loss = F.mse_loss(Q_expected, Q_targets) #loss function: deviation of prediction from more accurate prediction(Q_targets)
# Minimize the loss
self.optimizer.zero_grad()#setting gradient to zero
critic_loss.backward()#compute gradient (all partial derivatives)
torch.nn.utils.clip_grad_norm(self.local.parameters(), 1) #gradient clipping
self.optimizer.step() #adjust weights with the clipped gradient in order to perform gradient descent
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = actor.local(states)
actor_loss = - self.local(states, actions_pred).mean() #loss function = negative reward --> minimizing leads to maximizing reward
# Minimize the loss
actor.optimizer.zero_grad()#same as in critic
actor_loss.backward()
actor.optimizer.step()
# ----------------------- soft-update target networks ----------------------- #
self.soft_update(self.local, self.target) #self = critic
self.soft_update(actor.local, actor.target)
def soft_update(self, local_model, target_model):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
tau = self.TAU
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.size = size
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.random.standard_normal(self.size)
self.state = x + dx
return self.state
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, device, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.DEVICE = device
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
if len(self.memory) <= self.batch_size:
return None
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.DEVICE)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(self.DEVICE)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.DEVICE)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.DEVICE)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.DEVICE)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)