-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombined_execution.py
69 lines (58 loc) · 2.34 KB
/
combined_execution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/python3
# this file will combine the worker steps together
# to prepare to make this run on spark
from __future__ import print_function
import sys
from operator import add
import re
import ipdb
from pyspark import SparkContext, SparkConf
from align_reads import align_read_new
from pile_up import pile_up
import pprint
pp = pprint.PrettyPrinter(indent=4)
def align_single_read(read_raw):
print(read_raw)
mutation_list = align_read_new(read_raw)
if len(mutation_list) > 0:
flat_list = mutation_list[0]
flat_list.extend(mutation_list[1])
return list(map(convert_mutation_list, flat_list))
else:
return []
def convert_mutation_list(mutation):
return (mutation["ref_idx"], get_mutation_string_csv(mutation))
def get_mutation_string_csv(mutation):
if mutation["type"] == "delete":
return "delete,,"
elif mutation["type"] == "insert":
return "insert,%s,%d" % (mutation["base"], mutation["insert_idx"])
else:
return "%s,%s," % (mutation["type"], mutation["base"])
def pile_up_step(ref_idx_and_mutation_list):
# ipdb.set_trace()
ref_idx = ref_idx_and_mutation_list[0]
mutations = list(ref_idx_and_mutation_list[1])
# pp.pprint((ref_idx, mutations))
return pile_up(ref_idx, mutations)
def sort_mutation_by_idx(mutation_type_and_list):
mutation_type = mutation_type_and_list[0]
mutation_list = list(mutation_type_and_list[1])
pp.pprint(mutation_list)
mutation_list = sorted(mutation_list, key=(lambda x: int(x.split(",")[0])))
return (mutation_type, mutation_list)
if __name__ == "__main__":
dataset_name = "10k" # 10k, 1m or 100m
conf = SparkConf().setAppName("dna_alignment").setMaster("local[4]")
sc = SparkContext(conf=conf)
lines = sc.textFile("dataset/%s/reads.txt" % dataset_name, 16)
# aligned_reads = lines.flatMap(align_single_read).groupByKey().reduce(pile_up_step)
# mutations = aligned_reads.collect()
# for (ref_idx, mutation) in mutations:
# print("%d: %s" % (ref_idx, mutation))
aligned_reads = lines.flatMap(align_single_read).groupByKey()
piled_up_mutations = aligned_reads.map(pile_up_step).groupByKey()
formatted_mutation = piled_up_mutations.map(sort_mutation_by_idx)
formatted_mutation.saveAsTextFile("spark_result")
# pp.pprint(piled_up_mutations.collect())
sc.stop()