This set of modules allows the manipulation of tables through the layers of a neural network. This allows one to build very rich architectures:
- Table Container Modules encapsulate sub-Modules:
- ConcatTable : applies each member module to the same input Tensor and outputs a table;
- ParallelTable : applies the
ith
member module to theith
input and outputs a table;
- Table Conversion Modules convert between tables and Tensors or tables:
- SplitTable : splits a Tensor into a table of Tensors;
- JoinTable : joins a table of Tensors into a Tensor;
- MixtureTable : mixture of experts weighted by a gater;
- SelectTable : select one element from a table;
- FlattenTable : flattens a nested table hierarchy;
- Pair Modules compute a measure like distance or similarity from a pair (table) of input Tensors :
- PairwiseDistance : outputs the
p
-norm. distance between inputs; - DotProduct : outputs the dot product (similarity) between inputs;
- CosineDistance : outputs the cosine distance between inputs;
- PairwiseDistance : outputs the
- CMath Modules perform element-wise operations on a table of Tensors:
- Table of Criteria :
- CriterionTable : wraps a Criterion so that it can accept a Table of inputs.
Table-based modules work by supporting forward and backward methods that can accept tables as inputs. It turns out that the usual Sequential module can do this, so all that is needed is other child modules that take advantage of such tables.
mlp = nn.Sequential();
t={x,y,z}
pred=mlp:forward(t)
pred=mlp:forward{x,y,z} -- This is equivalent to the line before
ConcatTable is a container module that applies each member module to the same input Tensor or Table.
Example 1:
mlp= nn.ConcatTable()
mlp:add(nn.Linear(5,2))
mlp:add(nn.Linear(5,3))
pred=mlp:forward(torch.randn(5));
for i,k in pairs(pred) do print(i,k); end
which gives the output:
1
-0.4073
0.0110
[torch.Tensor of dimension 2]
2
0.0027
-0.0598
-0.1189
[torch.Tensor of dimension 3]
Example 2:
mlp= nn.ConcatTable()
mlp:add(nn.Identity())
mlp:add(nn.Identity())
pred=mlp:forward{torch.randn(2),{torch.randn(3)}};
print(pred)
which gives the output (using th):
{
1 :
{
1 : DoubleTensor - size: 2
2 :
{
1 : DoubleTensor - size: 3
}
}
2 :
{
1 : DoubleTensor - size: 2
2 :
{
1 : DoubleTensor - size: 3
}
}
}
ParallelTable is a container module that, in its forward
method, applies the ith
member module to the ith
input, and outputs a table of the set of outputs.
Example:
mlp= nn.ParallelTable()
mlp:add(nn.Linear(10,2))
mlp:add(nn.Linear(5,3))
x=torch.randn(10)
y=torch.rand(5)
pred=mlp:forward{x,y}
for i,k in pairs(pred) do print(i,k); end
which gives the output:
1
0.0331
0.7003
[torch.Tensor of dimension 2]
2
0.0677
-0.1657
-0.7383
[torch.Tensor of dimension 3]
module
= SplitTable(dimension, nInputDims)
Creates a module that takes a Tensor
as input and outputs several tables, splitting the Tensor along dimension dimension
.
The optional parameter nInputDims
allows to specify the number of dimensions that
this module will receive. This makes it possible to forward both minibatch and
non-minibatch tensors through the same module.
Example 1:
mlp=nn.SplitTable(2)
x=torch.randn(4,3)
pred=mlp:forward(x)
for i,k in pairs(pred) do print(i,k); end
gives the output:
1
1.3885
1.3295
0.4281
-1.0171
[torch.Tensor of dimension 4]
2
-1.1565
-0.8556
-1.0717
-0.8316
[torch.Tensor of dimension 4]
3
-1.3678
-0.1709
-0.0191
-2.5871
[torch.Tensor of dimension 4]
Example 2:
mlp=nn.SplitTable(1)
pred=mlp:forward(torch.randn(4,3))
for i,k in pairs(pred) do print(i,k); end
gives the output:
1
1.6114
0.9038
0.8419
[torch.Tensor of dimension 3]
2
2.4742
0.2208
1.6043
[torch.Tensor of dimension 3]
3
1.3415
0.2984
0.2260
[torch.Tensor of dimension 3]
4
2.0889
1.2309
0.0983
[torch.Tensor of dimension 3]
Example 3:
mlp=nn.SplitTable(1,2)
pred=mlp:forward(torch.randn(2,4,3))
for i,k in pairs(pred) do print(i,k); end
pred=mlp:forward(torch.randn(4,3))
for i,k in pairs(pred) do print(i,k); end
gives the output:
1
-1.3533 0.7448 -0.8818
-0.4521 -1.2463 0.0316
[torch.DoubleTensor of dimension 2x3]
2
0.1130 -1.3904 1.4620
0.6722 2.0910 -0.2466
[torch.DoubleTensor of dimension 2x3]
3
0.4672 -1.2738 1.1559
0.4664 0.0768 0.6243
[torch.DoubleTensor of dimension 2x3]
4
0.4194 1.2991 0.2241
2.9786 -0.6715 0.0393
[torch.DoubleTensor of dimension 2x3]
1
-1.8932
0.0516
-0.6316
[torch.DoubleTensor of dimension 3]
2
-0.3397
-1.8881
-0.0977
[torch.DoubleTensor of dimension 3]
3
0.0135
1.2089
0.5785
[torch.DoubleTensor of dimension 3]
4
-0.1758
-0.0776
-1.1013
[torch.DoubleTensor of dimension 3]
A more complicated example:
mlp=nn.Sequential(); --Create a network that takes a Tensor as input
mlp:add(nn.SplitTable(2))
c=nn.ParallelTable() --The two Tensors go through two different Linear
c:add(nn.Linear(10,3)) --Layers in Parallel
c:add(nn.Linear(10,7))
mlp:add(c) --Outputing a table with 2 elements
p=nn.ParallelTable() --These tables go through two more linear layers
p:add(nn.Linear(3,2)) -- separately.
p:add(nn.Linear(7,1))
mlp:add(p)
mlp:add(nn.JoinTable(1)) --Finally, the tables are joined together and output.
pred=mlp:forward(torch.randn(10,2))
print(pred)
for i=1,100 do -- A few steps of training such a network..
x=torch.ones(10,2);
y=torch.Tensor(3); y:copy(x:select(2,1,1):narrow(1,1,3))
pred=mlp:forward(x)
criterion= nn.MSECriterion()
local err=criterion:forward(pred,y)
local gradCriterion = criterion:backward(pred,y);
mlp:zeroGradParameters();
mlp:backward(x, gradCriterion);
mlp:updateParameters(0.05);
print(err)
end
module
= JoinTable(dimension, nInputDims)
Creates a module that takes a list of Tensors as input and outputs a
Tensor
by joining them together along dimension dimension
.
The optional parameter nInputDims
allows to specify the number of dimensions that
this module will receive. This makes it possible to forward both minibatch and
non-minibatch tensors through the same module.
Example 1:
x=torch.randn(5,1)
y=torch.randn(5,1)
z=torch.randn(2,1)
print(nn.JoinTable(1):forward{x,y})
print(nn.JoinTable(2):forward{x,y})
print(nn.JoinTable(1):forward{x,z})
gives the output:
1.3965
0.5146
-1.5244
-0.9540
0.4256
0.1575
0.4491
0.6580
0.1784
-1.7362
[torch.DoubleTensor of dimension 10x1]
1.3965 0.1575
0.5146 0.4491
-1.5244 0.6580
-0.9540 0.1784
0.4256 -1.7362
[torch.DoubleTensor of dimension 5x2]
1.3965
0.5146
-1.5244
-0.9540
0.4256
-1.2660
1.0869
[torch.Tensor of dimension 7x1]
Example 2:
module = nn.JoinTable(2,2)
x=torch.randn(3,1)
y=torch.randn(3,1)
mx=torch.randn(2,3,1)
my=torch.randn(2,3,1)
print(module:forward{x,y})
print(module:forward{mx,my})
gives the output:
0.4288 1.2002
-1.4084 -0.7960
-0.2091 0.1852
[torch.DoubleTensor of dimension 3x2]
(1,.,.) =
0.5561 0.1228
-0.6792 0.1153
0.0687 0.2955
(2,.,.) =
2.5787 1.8185
-0.9860 0.6756
0.1989 -0.4327
[torch.DoubleTensor of dimension 2x3x2]
A more complicated example:
mlp=nn.Sequential(); --Create a network that takes a Tensor as input
c=nn.ConcatTable() --The same Tensor goes through two different Linear
c:add(nn.Linear(10,3)) --Layers in Parallel
c:add(nn.Linear(10,7))
mlp:add(c) --Outputing a table with 2 elements
p=nn.ParallelTable() --These tables go through two more linear layers
p:add(nn.Linear(3,2)) -- separately.
p:add(nn.Linear(7,1))
mlp:add(p)
mlp:add(nn.JoinTable(1)) --Finally, the tables are joined together and output.
pred=mlp:forward(torch.randn(10))
print(pred)
for i=1,100 do -- A few steps of training such a network..
x=torch.ones(10);
y=torch.Tensor(3); y:copy(x:narrow(1,1,3))
pred=mlp:forward(x)
criterion= nn.MSECriterion()
local err=criterion:forward(pred,y)
local gradCriterion = criterion:backward(pred,y);
mlp:zeroGradParameters();
mlp:backward(x, gradCriterion);
mlp:updateParameters(0.05);
print(err)
end
module
= MixtureTable([dim])
Creates a module that takes a Table {gater, experts}
as input and outputs
the mixture of experts
(a Tensor or Table of Tensors) using a
gater
Tensor. When dim
is provided, it specifies the dimension of
the experts
Tensor that will be interpolated (or mixed). Otherwise,
the experts
should take the form of a Table of Tensors. This
Module works for experts
of dimension 1D or more, and for a
1D or 2D gater
, i.e. for single examples or mini-batches.
Considering an input = {G,E}
with a single example, then
the mixture of experts Tensor E
with
gater Tensor G
has the following form:
output = G[1]*E[1] + G[2]*E[2] + ... + G[n]*E[n]
where dim = 1
, n = E:size(dim) = G:size(dim)
and G:dim() == 1
.
Note that E:dim() >= 2
, such that output:dim() = E:dim() - 1
.
Example 1:
Using this Module, an arbitrary mixture of n
2-layer experts
by a 2-layer gater could be constructed as follows:
experts = nn.ConcatTable()
for i=1,n do
local expert = nn.Sequential()
expert:add(nn.Linear(3,4))
expert:add(nn.Tanh())
expert:add(nn.Linear(4,5))
expert:add(nn.Tanh())
experts:add(expert)
end
gater = nn.Sequential()
gater:add(nn.Linear(3,7))
gater:add(nn.Tanh())
gater:add(nn.Linear(7,n))
gater:add(nn.SoftMax())
trunk = nn.ConcatTable()
trunk:add(gater)
trunk:add(experts)
moe = nn.Sequential()
moe:add(trunk)
moe:add(nn.MixtureTable())
Forwarding a batch of 2 examples gives us something like this:
> =moe:forward(torch.randn(2,3))
-0.2152 0.3141 0.3280 -0.3772 0.2284
0.2568 0.3511 0.0973 -0.0912 -0.0599
[torch.DoubleTensor of dimension 2x5]
Example 2:
In the following, the MixtureTable expects experts
to be a Tensor of
size = {1,4,2,5,n}
:
experts = nn.Concat(5)
for i=1,n do
local expert = nn.Sequential()
expert:add(nn.Linear(3,4))
expert:add(nn.Tanh())
expert:add(nn.Linear(4,2*5))
expert:add(nn.Tanh())
expert:add(nn.Reshape(4,2,5,1))
experts:add(expert)
end
gater = nn.Sequential()
gater:add(nn.Linear(3,7))
gater:add(nn.Tanh())
gater:add(nn.Linear(7,n))
gater:add(nn.SoftMax())
trunk = nn.ConcatTable()
trunk:add(gater)
trunk:add(experts)
moe = nn.Sequential()
moe:add(trunk)
moe:add(nn.MixtureTable(5))
Forwarding a batch of 2 examples gives us something like this:
> =moe:forward(torch.randn(2,3)):size()
2
4
2
5
[torch.LongStorage of size 4]
module
= SelectTable(index)
Creates a module that takes a Table as input and outputs the element at index index
.
This can be either a Table or a Tensor.
The gradients of the non-index
elements are zeroed Tensors of the same size. This is true regardless of the
dept of the encapsulated Tensor as the function used internally to do so is recursive.
Example 1:
> input = {torch.randn(2,3), torch.randn(2,1)}
[0.0002s]
> =nn.SelectTable(1):forward(input)
-0.3060 0.1398 0.2707
0.0576 1.5455 0.0610
[torch.DoubleTensor of dimension 2x3]
[0.0002s]
> =nn.SelectTable(2):forward(input)
2.3080
-0.2955
[torch.DoubleTensor of dimension 2x1]
> =unpack(nn.SelectTable(1):backward(input, torch.randn(2,3)))
-0.4891 -0.3495 -0.3182
-2.0999 0.7381 -0.5312
[torch.DoubleTensor of dimension 2x3]
0
0
[torch.DoubleTensor of dimension 2x1]
Example 2:
> input = {torch.randn(2,3), {torch.randn(2,1), {torch.randn(2,2)}}}
> =nn.SelectTable(2):forward(input)
{
1 : DoubleTensor - size: 2x1
2 :
{
1 : DoubleTensor - size: 2x2
}
}
> =unpack(nn.SelectTable(2):backward(input, {torch.randn(2,1), {torch.randn(2,2)}}))
0 0 0
0 0 0
[torch.DoubleTensor of dimension 2x3]
{
1 : DoubleTensor - size: 2x1
2 :
{
1 : DoubleTensor - size: 2x2
}
}
> gradInput = nn.SelectTable(1):backward(input, torch.randn(2,3))
> =gradInput
{
1 : DoubleTensor - size: 2x3
2 :
{
1 : DoubleTensor - size: 2x1
2 :
{
1 : DoubleTensor - size: 2x2
}
}
}
> =gradInput[1]
-0.3400 -0.0404 1.1885
1.2865 0.4107 0.6506
[torch.DoubleTensor of dimension 2x3]
> gradInput[2][1]
0
0
[torch.DoubleTensor of dimension 2x1]
> gradInput[2][2][1]
0 0
0 0
[torch.DoubleTensor of dimension 2x2]
module
= FlattenTable()
Creates a module that takes an arbitrarily deep table of Tensors (potentially nested) as input and outputs a table of tensors, where the output tensor in index i
is the tensor with post-order DFS index i
in the input table.
This module is particularly useful in combination with nn.Identity() to create networks that can append to their input table.
Example:
x={torch.rand(1), {torch.rand(2), {torch.rand(3)}}, torch.rand(4)}
print(x)
print(nn.FlattenTable():forward(x))
gives the output:
{
1 : DoubleTensor - size: 1
2 :
{
1 : DoubleTensor - size: 2
2 :
{
1 : DoubleTensor - size: 3
}
}
3 : DoubleTensor - size: 4
}
{
1 : DoubleTensor - size: 1
2 : DoubleTensor - size: 2
3 : DoubleTensor - size: 3
4 : DoubleTensor - size: 4
}
module
= PairwiseDistance(p)
creates a module that takes a table of two vectors as input and outputs the distance between them using the p
-norm.
Example:
mlp_l1=nn.PairwiseDistance(1)
mlp_l2=nn.PairwiseDistance(2)
x=torch.Tensor({1,2,3})
y=torch.Tensor({4,5,6})
print(mlp_l1:forward({x,y}))
print(mlp_l2:forward({x,y}))
gives the output:
9
[torch.Tensor of dimension 1]
5.1962
[torch.Tensor of dimension 1]
A more complicated example:
-- imagine we have one network we are interested in, it is called "p1_mlp"
p1_mlp= nn.Sequential(); p1_mlp:add(nn.Linear(5,2))
-- But we want to push examples towards or away from each other
-- so we make another copy of it called p2_mlp
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
p2_mlp= nn.Sequential(); p2_mlp:add(nn.Linear(5,2))
p2_mlp:get(1).weight:set(p1_mlp:get(1).weight)
p2_mlp:get(1).bias:set(p1_mlp:get(1).bias)
-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) mlp
prl = nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)
-- now we define our top level network that takes this parallel table and computes the pairwise distance betweem
-- the pair of outputs
mlp= nn.Sequential()
mlp:add(prl)
mlp:add(nn.PairwiseDistance(1))
-- and a criterion for pushing together or pulling apart pairs
crit=nn.HingeEmbeddingCriterion(1)
-- lets make two example vectors
x=torch.rand(5)
y=torch.rand(5)
-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
local pred = mlp:forward(x)
local err = criterion:forward(pred, y)
local gradCriterion = criterion:backward(pred, y)
mlp:zeroGradParameters()
mlp:backward(x, gradCriterion)
mlp:updateParameters(learningRate)
end
-- push the pair x and y together, notice how then the distance between them given
-- by print(mlp:forward({x,y})[1]) gets smaller
for i=1,10 do
gradUpdate(mlp,{x,y},1,crit,0.01)
print(mlp:forward({x,y})[1])
end
-- pull apart the pair x and y, notice how then the distance between them given
-- by print(mlp:forward({x,y})[1]) gets larger
for i=1,10 do
gradUpdate(mlp,{x,y},-1,crit,0.01)
print(mlp:forward({x,y})[1])
end
module
= DotProduct()
creates a module that takes a table of two vectors as input and outputs the dot product between them.
Example:
mlp=nn.DotProduct()
x=torch.Tensor({1,2,3})
y=torch.Tensor({4,5,6})
print(mlp:forward({x,y}))
gives the output:
32
[torch.Tensor of dimension 1]
A more complicated example:
-- Train a ranking function so that mlp:forward({x,y},{x,z}) returns a number
-- which indicates whether x is better matched with y or z (larger score = better match), or vice versa.
mlp1=nn.Linear(5,10)
mlp2=mlp1:clone('weight','bias')
prl=nn.ParallelTable();
prl:add(mlp1); prl:add(mlp2)
mlp1=nn.Sequential()
mlp1:add(prl)
mlp1:add(nn.DotProduct())
mlp2=mlp1:clone('weight','bias')
mlp=nn.Sequential()
prla=nn.ParallelTable()
prla:add(mlp1)
prla:add(mlp2)
mlp:add(prla)
x=torch.rand(5);
y=torch.rand(5)
z=torch.rand(5)
print(mlp1:forward{x,x})
print(mlp1:forward{x,y})
print(mlp1:forward{y,y})
crit=nn.MarginRankingCriterion(1);
-- Use a typical generic gradient update function
function gradUpdate(mlp, x, y, criterion, learningRate)
local pred = mlp:forward(x)
local err = criterion:forward(pred, y)
local gradCriterion = criterion:backward(pred, y)
mlp:zeroGradParameters()
mlp:backward(x, gradCriterion)
mlp:updateParameters(learningRate)
end
inp={{x,y},{x,z}}
math.randomseed(1)
-- make the pair x and y have a larger dot product than x and z
for i=1,100 do
gradUpdate(mlp,inp,1,crit,0.05)
o1=mlp1:forward{x,y}[1];
o2=mlp2:forward{x,z}[1];
o=crit:forward(mlp:forward{{x,y},{x,z}},1)
print(o1,o2,o)
end
print "________________**"
-- make the pair x and z have a larger dot product than x and y
for i=1,100 do
gradUpdate(mlp,inp,-1,crit,0.05)
o1=mlp1:forward{x,y}[1];
o2=mlp2:forward{x,z}[1];
o=crit:forward(mlp:forward{{x,y},{x,z}},-1)
print(o1,o2,o)
end
module
= CosineDistance()
creates a module that takes a table of two vectors as input and outputs the cosine distance between them.
Example:
mlp=nn.CosineDistance()
x=torch.Tensor({1,2,3})
y=torch.Tensor({4,5,6})
print(mlp:forward({x,y}))
gives the output:
0.9746
[torch.Tensor of dimension 1]
A more complicated example:
-- imagine we have one network we are interested in, it is called "p1_mlp"
p1_mlp= nn.Sequential(); p1_mlp:add(nn.Linear(5,2))
-- But we want to push examples towards or away from each other
-- so we make another copy of it called p2_mlp
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
p2_mlp= p1_mlp:clone('weight','bias')
-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) mlp
prl = nn.ParallelTable()
prl:add(p1_mlp)
prl:add(p2_mlp)
-- now we define our top level network that takes this parallel table and computes the cosine distance betweem
-- the pair of outputs
mlp= nn.Sequential()
mlp:add(prl)
mlp:add(nn.CosineDistance())
-- lets make two example vectors
x=torch.rand(5)
y=torch.rand(5)
-- Grad update function..
function gradUpdate(mlp, x, y, learningRate)
local pred = mlp:forward(x)
if pred[1]*y < 1 then
gradCriterion=torch.Tensor({-y})
mlp:zeroGradParameters()
mlp:backward(x, gradCriterion)
mlp:updateParameters(learningRate)
end
end
-- push the pair x and y together, the distance should get larger..
for i=1,1000 do
gradUpdate(mlp,{x,y},1,0.1)
if ((i%100)==0) then print(mlp:forward({x,y})[1]);end
end
-- pull apart the pair x and y, the distance should get smaller..
for i=1,1000 do
gradUpdate(mlp,{x,y},-1,0.1)
if ((i%100)==0) then print(mlp:forward({x,y})[1]);end
end
module
= CriterionTable(criterion)
Creates a module that wraps a Criterion module so that it can accept a Table of inputs. Typically the table would contain two elements: the input and output x
and y
that the Criterion compares.
Example:
mlp = nn.CriterionTable(nn.MSECriterion())
x=torch.randn(5)
y=torch.randn(5)
print(mlp:forward{x,x})
print(mlp:forward{x,y})
gives the output:
0
1.9028918413199
Here is a more complex example of embedding the criterion into a network:
function table.print(t)
for i,k in pairs(t) do print(i,k); end
end
mlp=nn.Sequential(); -- Create an mlp that takes input
main_mlp=nn.Sequential(); -- and output using ParallelTable
main_mlp:add(nn.Linear(5,4))
main_mlp:add(nn.Linear(4,3))
cmlp=nn.ParallelTable();
cmlp:add(main_mlp)
cmlp:add(nn.Identity())
mlp:add(cmlp)
mlp:add(nn.CriterionTable(nn.MSECriterion())) -- Apply the Criterion
for i=1,20 do -- Train for a few iterations
x=torch.ones(5);
y=torch.Tensor(3); y:copy(x:narrow(1,1,3))
err=mlp:forward{x,y} -- Pass in both input and output
print(err)
mlp:zeroGradParameters();
mlp:backward({x, y} );
mlp:updateParameters(0.05);
end
Takes a table of tensors and outputs summation of all tensors.
ii = {torch.ones(5),torch.ones(5)*2,torch.ones(5)*3}
=ii[1]
1
1
1
1
1
[torch.DoubleTensor of dimension 5]
return ii[2]
2
2
2
2
2
[torch.DoubleTensor of dimension 5]
return ii[3]
3
3
3
3
3
[torch.DoubleTensor of dimension 5]
m=nn.CAddTable()
=m:forward(ii)
6
6
6
6
6
[torch.DoubleTensor of dimension 5]
Takes a table with two tensor and returns the component-wise subtraction between them.
m=nn.CSubTable()
=m:forward({torch.ones(5)*2.2,torch.ones(5)})
1.2000
1.2000
1.2000
1.2000
1.2000
[torch.DoubleTensor of dimension 5]
Takes a table of tensors and outputs the multiplication of all of them.
ii = {torch.ones(5)*2,torch.ones(5)*3,torch.ones(5)*4}
m=nn.CMulTable()
=m:forward(ii)
24
24
24
24
24
[torch.DoubleTensor of dimension 5]
Takes a table with two tensor and returns the component-wise division between them.
m=nn.CDivTable()
=m:forward({torch.ones(5)*2.2,torch.ones(5)*4.4})
0.5000
0.5000
0.5000
0.5000
0.5000
[torch.DoubleTensor of dimension 5]