-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBT_height.thy
117 lines (93 loc) · 4.46 KB
/
RBT_height.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
theory RBT_height
imports "HOL-Library.Code_Target_Nat" "Containers.Containers" RBT_set_opt
begin
typedef (overloaded) 'a sdlist = "{xs :: ('a :: ccompare) list.
case ID CCOMPARE('a) of None \<Rightarrow> xs = []
| Some c \<Rightarrow> linorder.sorted (le_of_comp c) xs \<and> distinct xs}"
by (auto intro!: exI[of _ "[]"] split: option.splits)
(metis keys_eq_Nil_iff sorted_RBT_Set_keys)
setup_lifting type_definition_sdlist
lemma is_rbt_rbtreeify:
fixes xs :: "('a :: ccompare) list"
and c :: "'a comparator"
assumes assms: "ID ccompare = Some c" "linorder.sorted (le_of_comp c) xs" "distinct xs"
shows "ord.is_rbt (lt_of_comp c) (rbtreeify (map (\<lambda>x. (x, ())) xs))"
using assms linorder.is_rbt_rbtreeify[OF ID_ccompare[OF assms(1)], of "map (\<lambda>x. (x, ())) xs"]
by (auto simp: comp_def)
lift_definition rbt_of_sdlist :: "('a :: ccompare) sdlist \<Rightarrow> 'a set_rbt" is
"\<lambda>xs. rbtreeify (map (\<lambda>x. (x, ())) xs)"
using is_rbt_rbtreeify
by fastforce
lemma rbt_comp_lookup_iff_in_set:
fixes x :: "'a :: ccompare"
and xs :: "'a list"
and c :: "'a comparator"
assumes "ID ccompare = Some c" "linorder.sorted (le_of_comp c) xs" "distinct xs"
shows "rbt_comp_lookup ccomp (rbtreeify (map (\<lambda>x. (x, ())) xs)) x = Some () \<longleftrightarrow> x \<in> set xs"
using linorder.rbt_lookup_rbtreeify[OF ID_ccompare[OF assms(1)], of "map (\<lambda>x. (x, ())) xs"]
assms(2,3)
by (auto simp: rbt_comp_lookup[OF ID_ccompare'[OF assms(1)]] assms(1) map_of_map_Pair_const
comp_def)
lemma RBT_set_rbt_of_sdlist:
fixes xs :: "('a :: ccompare) sdlist"
shows "RBT_set (rbt_of_sdlist xs) = set (Rep_sdlist xs)"
unfolding RBT_set_def
apply transfer
using rbt_comp_lookup_iff_in_set
by (fastforce simp: rbtreeify_def split: option.splits)
lemma quicksort_conv_sort_key:
fixes f :: "'b \<Rightarrow> 'a :: ccompare"
assumes "ID (ccompare :: 'a comparator option) = Some c"
shows "ord.quicksort (lt_of_comp c) xs = linorder.sort_key (le_of_comp c) (\<lambda>x. x) xs"
by (rule linorder.quicksort_conv_sort[OF ID_ccompare[OF assms]])
context linorder
begin
lemma distinct_remdups_adj: "sorted xs \<Longrightarrow> distinct (remdups_adj xs)"
by (induction xs rule: remdups_adj.induct) auto
end
lift_definition sdlist_of_list :: "('a :: ccompare) list \<Rightarrow> 'a sdlist" is
"\<lambda>xs. case ID CCOMPARE('a) of None \<Rightarrow> []
| Some c \<Rightarrow> remdups_adj (ord.quicksort (lt_of_comp c) xs)"
using linorder.sorted_remdups_adj[OF ID_ccompare linorder.sorted_sort[OF ID_ccompare]]
using linorder.distinct_remdups_adj[OF ID_ccompare linorder.sorted_sort[OF ID_ccompare]]
using quicksort_conv_sort_key
by (fastforce split: option.splits)
lemma set_sdlist_of_list:
fixes xs :: "('a :: ccompare) list"
and c :: "'a comparator"
assumes assms: "ID ccompare = Some c"
shows "set (Rep_sdlist (sdlist_of_list xs)) = set xs"
using assms
apply transfer
using linorder.set_sort[OF ID_ccompare] quicksort_conv_sort_key
by fastforce
definition sset :: "'a list \<Rightarrow> 'a set" where
"sset = set"
lemma sset_code[code]:
fixes xs :: "('a :: ccompare) list"
shows "sset xs = (case ID CCOMPARE('a) of None \<Rightarrow> Code.abort (STR ''sset: ccompare = None'')
(\<lambda>_. sset xs)
| Some _ \<Rightarrow> RBT_set (rbt_of_sdlist (sdlist_of_list xs)))"
by (auto simp: sset_def RBT_set_rbt_of_sdlist set_sdlist_of_list split: option.splits)
definition nat_upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" where
"nat_upt i j = [i..<j]"
definition nat_set :: "nat list \<Rightarrow> nat set" where
"nat_set = set"
definition nat_sset :: "nat list \<Rightarrow> nat set" where
"nat_sset = sset"
definition un_nat_set :: "nat set \<Rightarrow> nat set \<Rightarrow> nat set" where
"un_nat_set X Y = X \<union> Y"
definition inter_nat_set :: "nat set \<Rightarrow> nat set \<Rightarrow> nat set" where
"inter_nat_set X Y = X \<inter> Y"
export_code nat_upt nat_set nat_sset un_nat_set inter_nat_set nat_of_integer integer_of_nat
in OCaml module_name RBT_height file_prefix "RBT_height_old"
declare Set_union_code(1)[code del]
declare rbt_union_code[code]
declare Set_inter_code(16)[code del]
declare rbt_inter_code[code]
(* Set_minus on RBTs not supported in Set_Impl! *)
declare Set_minus_code[code del]
declare rbt_minus_code[code]
export_code nat_upt nat_set nat_sset un_nat_set inter_nat_set nat_of_integer integer_of_nat
in OCaml module_name RBT_height file_prefix "RBT_height_opt"
end