-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstack_over_flow_qa_eval.py
532 lines (408 loc) · 20 KB
/
stack_over_flow_qa_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import sys
import random
from time import strftime, gmtime, time
from report_result import ReportResult
from configuration import Conf
import argparse
import json
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras import backend as K
from scipy.stats import rankdata
import logging
import numpy as np
import tensorflow as tf
import pandas as pd
def clear_session():
K.clear_session()
class Evaluator:
def __init__(self, conf_json, model, optimizer=None, name=None):
try:
data_path = os.environ['STACK_OVER_FLOW_QA']
except KeyError:
logger.warning("STACK_OVER_FLOW_QA is not set. Set it to your clone of https://github.com/mrezende/stack_over_flow_python")
sys.exit(1)
self.conf = Conf(conf_json)
self.model = model(self.conf)
if name is None:
self.name = self.conf.name() + '_' + model.__name__
logger.info(f'Initializing Evaluator ...')
logger.info(f'Name: {self.name}')
else:
self.name = name
self.path = data_path
self.params = self.conf.training_params()
self.optimizer = self.params['optimizer'] if optimizer is None else optimizer
self.answers = self.load('answers.json') # self.load('generated')
self.answers_index = self.load('answers_index.json')
self.training_data = self.load('training.json')
self.dev_data = self.load('dev.json')
self.eval_data = self.load('eval.json')
self._vocab = None
self._reverse_vocab = None
self._eval_sets = None
self.top1_ls = []
self.mrr_ls = []
##### Resources #####
def save_conf(self):
self.conf.save_conf()
def load(self, name):
return json.load(open(os.path.join(self.path, name), 'r'))
def vocab(self):
if self._vocab is None:
reverse_vocab = self.reverse_vocab()
self._vocab = dict((v, k.lower()) for k, v in reverse_vocab.items())
return self._vocab
def reverse_vocab(self):
if self._reverse_vocab is None:
samples = self.load('samples_for_tokenizer.json')
tokenizer = Tokenizer()
tokenizer.fit_on_texts(samples)
self._reverse_vocab = tokenizer.word_index
return self._reverse_vocab
def describe(self):
logger.info(f'Training Summary: {self.name}')
self.model.training_summary()
logger.info(f'Prediction Summary: {self.name}')
self.model.prediction_summary()
path = 'models/summary/'
if not os.path.exists(path):
os.makedirs(path)
training_file = f'plot_training_{self.name}.png'
training_path = path + training_file
self.model.save_training_plot_model(training_path)
prediction_file = f'plot_prediction_{self.name}.png'
prediction_path = path + prediction_file
self.model.save_prediction_plot_model(prediction_path)
def compile(self):
self.model.compile(self.optimizer)
##### Loading / saving #####
def save_json(self, name = None):
path = 'models/weights/json/'
if not os.path.exists(path):
os.makedirs(path)
suffix = self.name if name is None else name
logger.info(f'Saving config json: {path}config_{suffix}.json')
logger.info(f'Saving config json: {path}config_{suffix}_best.json')
self.model.save_json(f'{path}config_{suffix}.json', overwrite=True)
self.model.save_json(f'{path}config_{suffix}_best.json', overwrite=True)
def save_epoch(self, name = None):
path = 'models/weights/'
if not os.path.exists(path):
os.makedirs(path)
suffix = self.name if name is None else name
logger.info(f'Saving weights: {path}weights_epoch_{suffix}.h5')
self.model.save_weights(f'{path}weights_epoch_{suffix}.h5', overwrite=True)
def load_json(self, name = None):
path = 'models/weights/json/'
suffix = self.name if name is None else name
assert os.path.exists(f'{path}config_{suffix}.json'), f'Weights at epoch {suffix} not found'
logger.info(f'Loading config json: {path}config_{suffix}.json')
self.model.load_json(f'{path}config_{suffix}.json')
def load_epoch(self, name):
path = 'models/weights/'
suffix = name
assert os.path.exists(f'{path}weights_epoch_{suffix}.h5'), f'Weights at epoch {suffix} not found'
logger.info(f'Loading weights: {path}weights_epoch_{suffix}.h5')
self.model.load_weights(f'{path}weights_epoch_{suffix}.h5')
def load_best_json(self, name = None):
path = 'models/weights/json/'
suffix = self.name if name is None else name
suffix += '_best'
assert os.path.exists(f'{path}config_{suffix}.json'), f'Weights at epoch {suffix} not found'
logger.info(f'Loading best val loss config json: {path}config_{suffix}.json')
self.model.load_json(f'{path}config_{suffix}.json')
def load_best_epoch(self, name):
path = 'models/weights/'
suffix = name + '_best'
assert os.path.exists(f'{path}weights_epoch_{suffix}.h5'), f'Weights at epoch {suffix} not found'
logger.info(f'Loading best val loss weights: {path}weights_epoch_{suffix}.h5')
self.model.load_weights(f'{path}weights_epoch_{suffix}.h5')
##### Converting / reverting #####
def convert(self, words):
rvocab = self.reverse_vocab()
if type(words) == str:
words = words.strip().lower().split(' ')
return [rvocab.get(w, 0) for w in words]
def revert(self, indices):
vocab = self.vocab()
return [vocab.get(i, 'X') for i in indices]
##### Padding #####
def padq(self, data):
return self.pad(data, self.conf.question_len())
def pada(self, data):
return self.pad(data, self.conf.answer_len())
def pad(self, data, len=None):
from keras.preprocessing.sequence import pad_sequences
return pad_sequences(data, maxlen=len, padding='post', truncating='post', value=0)
##### Training #####
def get_time(self):
return strftime('%Y-%m-%d %H:%M:%S', gmtime())
def train_and_evaluate(self, mode='train'):
val_losses = []
self.describe()
if mode == 'train':
self.compile()
self.save_json()
val_loss = self.train(self.training_data)
val_losses.append(val_loss)
logger.info(f'Val loss: {val_loss}')
elif mode == 'evaluate':
self.load_json()
results = self.evaluate(verbose=True)
# results:
logger.info(f'final_results: {results}')
df = pd.DataFrame(results)
top1_desc = df.describe()['top1']
mrr_desc = df.describe()['mrr']
# save histogram plot
report = ReportResult({'positions': np.append([], results['positions'])}, index=[i for i in range(1, len(np.append([], results['positions'])) + 1)], plot_name = f'histogram_{self.name}')
report.generate_histogram()
report.save_plot()
logger.info(f'Top1 Description: {top1_desc}')
logger.info(f'MRR Description: {mrr_desc}')
elif mode == 'evaluate-best':
self.load_best_json()
results = self.evaluate_best(verbose=True)
# results:
logger.info(f'model_best_val_loss final_results: {results}')
df = pd.DataFrame(results)
top1_desc = df.describe()['top1']
mrr_desc = df.describe()['mrr']
# save histogram plot
report = ReportResult({'positions': np.append([], results['positions'])},
index=[i for i in range(1, len(np.append([], results['positions'])) + 1)],
plot_name=f'histogram_best_{self.name}')
report.generate_histogram()
report.save_plot()
logger.info(f'Top1 Description: {top1_desc}')
logger.info(f'MRR Description: {mrr_desc}')
elif mode == 'evaluate-code-by-length':
self.load_json()
filenames = ['eval_15.json', 'eval_25.json', 'eval_35.json', 'eval_50.json',
'eval_75.json', 'eval_100.json', 'eval_larger_100.json']
for filename in filenames:
X = self.load(filename)
results = self.evaluate(X=X, verbose=True)
# results:
logger.info(f'----------- eval: {filename} ------------')
logger.info(f'{filename} final_results: {results}')
df = pd.DataFrame(results)
top1_desc = df.describe()['top1']
mrr_desc = df.describe()['mrr']
# save histogram plot
report = ReportResult({'positions': np.append([], results['positions'])},
index=[i for i in range(1, len(np.append([], results['positions'])) + 1)],
plot_name=f'histogram_best_{self.name}')
report.generate_histogram()
report.save_plot()
logger.info(f'Top1 Description: {top1_desc}')
logger.info(f'MRR Description: {mrr_desc}')
elif mode == 'save_config':
self.save_json()
def evaluate(self, X = None, name = None, verbose=False):
name = self.name if name is None else name
self.load_epoch(name)
data = self.eval_data if X is None else X
results = {'top1': [], 'mrr': [], 'positions': []}
logger.info('Evaluating...')
for i in range(0, 20):
top1, mrr, positions = self.get_score(data, verbose=verbose)
results['top1'].append(top1)
results['mrr'].append(mrr)
results['positions'].append(positions)
logger.info(f'Iteration: {i}: Top-1 Precision {top1}, MRR {mrr}, Positions: {positions}')
return results
def evaluate_best(self, X = None, name = None, verbose=False):
name = self.name if name is None else name
self.load_best_epoch(name)
data = self.eval_data if X is None else X
results = {'top1': [], 'mrr': [], 'positions': []}
logger.info('Evaluating...')
for i in range(0, 20):
top1, mrr, positions = self.get_score(data, verbose=verbose)
results['top1'].append(top1)
results['mrr'].append(mrr)
results['positions'].append(positions)
logger.info(f'Iteration: {i}: Top-1 Precision {top1}, MRR {mrr}, Positions: {positions}')
return results
def train(self, X):
batch_size = self.params['batch_size']
validation_split = self.params['validation_split']
nb_epoch = self.params['nb_epoch']
# top_50 = self.load('top_50')
questions = list()
good_answers = list()
for j, q in enumerate(X):
questions += [q['question']] * len(q['good_answers'])
good_answers += q['good_answers']
logger.info('Began training at %s on %d samples' % (self.get_time(), len(questions)))
questions = self.padq(questions)
good_answers = self.pada(good_answers)
best_top1_mrr = {'top1': 0, 'mrr': 0}
hist_losses = {'val_loss': [], 'loss': []}
hist_results = {'results': []}
best_val_loss = 10 # positive number, as long val_loss is decimal
val_loss_without_improve = 0
patience = nb_epoch / 20 # 5% of number of epochs
for i in range(1, nb_epoch + 1):
bad_answers = self.pada(random.sample(self.answers, len(good_answers)))
logger.info(f'Fitting epoch {i}')
hist = self.model.fit([questions, good_answers, bad_answers], epochs=1,
batch_size=batch_size,
validation_split=validation_split, verbose=1)
val_loss = hist.history['val_loss'][0]
loss = hist.history['loss'][0]
hist_losses['val_loss'].append(val_loss)
hist_losses['loss'].append(loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
val_loss_without_improve = 0
logger.info(f'Saving best val_loss weights: Epoch {i} best val_loss: {best_val_loss}')
temp_filename = f'{self.name}_best'
self.save_epoch(temp_filename)
else:
val_loss_without_improve += 1
# temporary weights from last training
temp_filename = f'{self.name}_aux'
self.save_epoch(temp_filename)
# check MRR
results = self.evaluate(self.dev_data, temp_filename)
df = pd.DataFrame(results)
mrr = df.mean()['mrr']
top1 = df.mean()['top1']
hist_results['results'].append(results)
if mrr > best_top1_mrr['mrr']:
best_top1_mrr['top1'] = top1
best_top1_mrr['mrr'] = mrr
logger.info(f'Epoch {i} Loss = {loss}, Validation Loss = {val_loss} ' +
f'(Best average: TOP1 = {top1}, MRR = {mrr})')
# saving weights
self.save_epoch()
# early stopping like Staqc (Yao et al.)
# see source code: https://github.com/mrezende/StackOverflow-Question-Code-Dataset/blob/master/BiV_HNN/run.py
if val_loss_without_improve > patience or loss < 1e-4:
break
# save plot val_loss, loss
report = ReportResult(hist_losses, [i for i in range(1, len(hist_losses['loss']) + 1)], self.name)
plot = report.generate_line_report()
report.save_plot()
# top1, mrr, positions:
logger.info(f'hist_results: {hist_results}')
logger.info(f'saving loss, val_loss plot')
# save conf
self.save_conf()
clear_session()
return val_loss
def get_score(self, X, verbose=False, shuffle=False):
c_1, c_2 = 0, 0
logger.info(f'len X: {len(X)}')
positions = []
for i, d in enumerate(X):
bad_answers = random.sample(self.answers, 49)
answers = d['good_answers'] + bad_answers
answers_original = answers
answers = self.pada(answers)
question = self.padq([d['question']] * len(answers))
sims = self.model.predict([question, answers])
n_good = len(d['good_answers'])
max_r = np.argmax(sims)
max_n = np.argmax(sims[:n_good])
r = rankdata(sims, method='max')
sims_flattened = sims.flatten()
sims_index_sorted = np.argsort(sims_flattened)[::-1][:len(sims_flattened)]
if verbose:
min_r = np.argmin(sims)
amin_r = answers[min_r]
amax_r = answers[max_r]
amax_n = answers[max_n]
logger.info(' ----- begin question ----- ')
logger.info(' '.join(self.revert(d['question'])))
logger.info('Predicted: ({}) '.format(sims[max_r]) + ' '.join(self.revert(amax_r)))
logger.info('Expected: ({}) Rank = {} '.format(sims[max_n], r[max_n]) + ' '.join(self.revert(amax_n)))
logger.info('Worst: ({})'.format(sims[min_r]) + ' '.join(self.revert(amin_r)))
logger.info(' ----- end question ----- ')
logger.info('------ begin correct answer ----------')
for good_answer in d['good_answers']:
logger.info(' '.join(self.revert(good_answer)))
logger.info('------ end correct answer ----------')
logger.info('------ begin answers ----------')
for sim_index in sims_index_sorted:
answer = answers_original[sim_index]
is_good_answer = False
for good_answer in d['good_answers']:
if np.array_equal(good_answer, answer):
is_good_answer = True
break
if is_good_answer == False:
question_id = self.find_question_id(answer)
answer_index = answers_original.index(answer)
answer_rank = r[answer_index]
str_answer = 'Question Id (sof): ' + str(question_id) + ' - Rank: ' + str(answer_rank) + ' - ' + ' '.join(self.revert(answer))
logger.info(str_answer)
logger.info('------ end answers ----------')
c_1 += 1 if max_r == max_n else 0
position = r[max_r] - r[max_n] + 1
c_2 += 1 / float(position)
positions.append(position)
top1 = c_1 / float(len(X))
mrr = c_2 / float(len(X))
logger.info('Top-1 Precision: %f' % top1)
logger.info('MRR: %f' % mrr)
return top1, mrr, positions
def find_question_id(self, answer):
index = self.answers.index(answer)
question_id = self.answers_index[index]
return question_id
def save_score(self):
with open('results_conf.txt', 'a+') as append_file:
conf_json, name = self.conf.conf_json_and_name()
top1_precisions = ','.join(self.top1_ls)
mrrs = ','.join(self.mrr_ls)
append_file.write(f'{name}; {conf_json}; top-1 precision: {top1_precisions}; MRR: {mrrs}\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='run question answer selection')
parser.add_argument('--conf_file', metavar='CONF_FILE', type=str, default="stack_over_flow_conf.json", help='conf json file: stack_over_flow_conf.json')
parser.add_argument('--mode', metavar='MODE', type=str, default="train", help='mode: train|evaluate|evaluate-best|evaluate-code-by-length|save_config')
parser.add_argument('--conf_name', metavar='CONF_NAME', type=str, default=None, help='conf_name: part of name of weights file')
parser.add_argument('--model', metavar='MODEL', type=str, default='cnn-lstm',
help='model name: embedding|cnn|cnn-lstm|rnn-attention')
args = parser.parse_args()
# configure logging
logger = logging.getLogger(os.path.basename(sys.argv[0]))
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info('running %s' % ' '.join(sys.argv))
conf_file = args.conf_file
mode = args.mode
conf_name = args.conf_name
model = args.model
confs = json.load(open(conf_file, 'r'))
from keras_models import EmbeddingModel, ConvolutionModel, ConvolutionalLSTM, UnifModel, SharedConvolutionModel
from keras_models import SharedConvolutionModelWithBatchNormalization, ConvolutionModelWithBatchNormalization
from keras_models import UnifModelWithBatchNormalization
for conf in confs:
logger.info(f'Conf.json: {conf}')
evaluator = None
if model == 'cnn-lstm':
evaluator = Evaluator(conf, model=ConvolutionalLSTM, name=conf_name)
elif model == 'embedding':
evaluator = Evaluator(conf, model=EmbeddingModel, name=conf_name)
elif model == 'cnn':
evaluator = Evaluator(conf, model=ConvolutionModel, name=conf_name)
elif model == 'shared-cnn':
evaluator = Evaluator(conf, model=SharedConvolutionModel, name=conf_name)
elif model == 'cnn-with-bn':
evaluator = Evaluator(conf, model=ConvolutionModelWithBatchNormalization, name=conf_name)
elif model == 'shared-cnn-with-bn':
evaluator = Evaluator(conf, model=SharedConvolutionModelWithBatchNormalization, name=conf_name)
elif model == 'attention':
evaluator = Evaluator(conf, model=UnifModel, name=conf_name)
elif model == 'attention-with-bn':
evaluator = Evaluator(conf, model=UnifModelWithBatchNormalization, name=conf_name)
# train and evaluate the model
if evaluator is not None:
evaluator.train_and_evaluate(mode)
else:
parser.print_help()
sys.exit()