forked from nzherald/ece-map
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.R
92 lines (83 loc) · 3.27 KB
/
data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
library(tidyverse)
library(r2d3)
library(jsonlite)
library(forcats)
rank <- read_csv("data/ranked-schools.csv")
schools <- read_csv("data/Directory-ECE-Current.clean.csv",
col_types = cols(
.default = col_character(),
number = col_integer(),
community_of_learning_id = col_double(),
longitude = col_double(),
latitude = col_double(),
all_children = col_double(),
under_2s = col_double(),
age_0 = col_double(),
age_1 = col_double(),
age_2 = col_double(),
age_3 = col_double(),
age_4 = col_double(),
age_5 = col_double(),
total_roll = col_double(),
maori = col_double(),
pacific = col_double(),
asian = col_double(),
european_pakeha = col_double(),
other = col_double()
))
rated <- schools %>%
left_join(rank %>%
arrange(desc(rankedDate)) %>%
group_by(rankedId) %>%
mutate(row = row_number()) %>%
ungroup() %>%
filter(row == 1) %>%
select(-row) %>%
mutate(number=as.integer(rankedId)), by=c("number"))
sorted <- rated %>%
filter(institution_type != "Casual-Education and Care",
institution_type != "Hospital Based") %>%
mutate(type = case_when(
institution_type == "Education and Care Service" & authority == "Community based" ~ "Education and Care\nCommunity based",
institution_type == "Education and Care Service" & authority == "Privately owned" ~ "Education and Care\nPrivately owned",
TRUE ~ institution_type
),
rank=as_factor(coalesce(str_to_sentence(rankedRank), "Report unavailable")),
rank=fct_relevel(rank, c(
"Very well placed",
"Well placed",
"Needs further development",
"Not well placed",
"No rating",
"Report unavailable"
)),
ero = coalesce(as.numeric(as.factor(rank)),6)
)
geodata <- sorted %>%
select(number, ero, latitude, longitude, total_roll, type) %>%
filter(!is.na(latitude), !is.na(longitude)) %>%
mutate(type = as.numeric(as.factor(type)) ) %>%
sf::st_as_sf(coords = c("longitude","latitude"))
geodata %>% sf::st_write("interactive/src/assets/ece.geojson", delete_dsn=T)
sorted %>%
mutate(color = as.numeric(as.factor(type)) ) %>%
count(y=type, color, name="x") %>%
arrange(desc(x)) %>%
jsonlite::write_json("interactive/src/types.json", auto_unbox=T)
sorted %>%
count(y=rank, color=ero, name="x") %>%
arrange(desc(color)) %>%
jsonlite::write_json("interactive/src/rating.json", auto_unbox=T)
sorted %>%
mutate(definition=if_else(definition=="Not Applicable", NA_character_,definition),
type_idx = as.numeric(as.factor(type)),
rankedDate = format(as.Date(rankedDate), "%d %B, %Y")
) %>%
select(number, name, type=institution_type, type_idx, authority, street,
suburb, town_city, definition, rating=rank, erolink=rankedUrl,
erodate=rankedDate, total_roll, under_2s
) %>%
split(.$number) %>%
map(unbox) %>%
as_d3_data() %>%
write_json("interactive/src/assets/details.json", auto_unbox=T)