Skip to content

Latest commit

 

History

History
75 lines (66 loc) · 2.01 KB

README.md

File metadata and controls

75 lines (66 loc) · 2.01 KB

Badger TeamX Video Retrieval

Developed from the AI Challenge 2022

Video retrieval interface based on AI.

Features

  • Retrieve images based on english description, similar images, keywords, hybrids,...
  • Context slider supports viewing frames around keyframes
  • Select and load local or full data partition
  • Access online youtube videos at any time or frame
  • Queue, add new or delete selected frame at any position
  • Export the queue as a file (*.csv) for the qualifying round
  • Load, edit and submit final results via API
  • Adjust output quantity, show real-time search results
  • Manage search results based on multi-tabs

Installation and Running

  • Requires at least 120GB of available storage
  • Now available on Windows, MacOS and Linux
  • Requirements: Python >= 3.8, <= 3.10.
  • Recommended: Miniconda/Anaconda.

Download source code

  1. Install git.
  2. Download the badger-teamx-retrieval repository
git clone https://github.com/mrtrieuphong/badger-teamx-retrieval.git
cd badger-teamx-retrieval

Create environment

  1. Use Conda [Recommended]
conda create -n badger python=3.8
conda activate badger-venv
  1. Use virtualenv
pip install virtualenv
python3 -m venv badger-venv
# MacOS, Ubuntu
source badger-venv/bin/activate
# Windows
badger-venv/Scripts/activate

Install requirements

pip install -r requirements.txt

Download required

  1. OpenAI CLIP model: ../CLIP/clip/bpe_simple_vocab_16e6.txt.gz
  2. Images dataset: ../Images
  3. Features: ../Features

Prepare Materials

  1. Create thumbnails
python3 Tools/1_create_thumbnails.py
  1. Create photo ids
python3 Tools/2_create_photo_ids.py
  1. Create features
python3 Tools/3_create_features.py
  1. Create mapping
python3 Tools/4_create_mapping.py