-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerator.py
159 lines (130 loc) · 5.57 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
# @Time : 18-8-16 下午4:47
# @Author : zhangmr
# @File : generator.py
import os
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.python.platform import gfile
import tensorflow as tf
import matplotlib.pyplot as plt
class ImgGenerator:
def __init__(self, base_dir, feature_extractor, is_train=True):
self.base_dir = base_dir
self.feature_extractor = feature_extractor
self.attributes, self.classes = self._get_maps(os.path.join(base_dir, 'attributes_per_class.txt'))
print("attributes shape: ", self.attributes.shape)
print("classes shape: ", self.classes.shape)
if is_train:
self.img_path = os.path.join(base_dir, 'train')
self.label_path = os.path.join(base_dir, 'train.txt')
self.x, self.y, self.s = self._get_data()
print("extracting features----------------")
self.xf = feature_extractor.extract(self.x)
else:
self.img_path = os.path.join(base_dir, 'test')
self.x = self._get_imgs()
print("extracting features----------------")
self.xf = feature_extractor.extract(self.x)
def _get_maps(self, attributes_path):
"""
获取所有的类别及类别属性。
:param attributes_path: attributes_per_class.txt所在路径
:return: arrays
"""
attributes = []
classes = []
with open(attributes_path) as f:
per_class_attributes = f.readlines()
for one_class_attribute in per_class_attributes:
values = one_class_attribute.split()
label = values.pop(0)
values = [float(x) for x in values]
attributes.append(values)
classes.append(label)
return np.array(attributes), np.array(classes)
def _get_imgs(self):
"""
获取图像目录下所有的图片名(绝对路径)
:return:
"""
imgs = os.listdir(self.img_path)
imgs = [os.path.join(self.img_path, img) for img in imgs]
return imgs
def _get_data(self):
"""
根据train.txt获取所有图片名(绝对路径)、类别标签、类别属性
:return:
"""
imgs = []
labels = []
attributes = []
with open(self.label_path) as f:
pairs = f.readlines()
for pair in pairs:
img_name, img_label = pair.split()
imgs.append(os.path.join(self.img_path, img_name))
labels.append(img_label)
id = list(self.classes).index(img_label)
attributes.append(self.attributes[id])
return np.array(imgs), np.array(labels), np.array(attributes)
def split_data(self, split_size=0.2):
"""
划分训练集和验证集。
:param split_size: unseen class所占的比例
:return: xf_train, xf_eval, y_train, y_eval, s_train, s_eval
"""
train_classes, eval_classes = train_test_split(self.classes, test_size=split_size, random_state=42,
shuffle=True)
train_indices = self._get_indices(train_classes)
eval_indices = self._get_indices(eval_classes)
# 将训练集中的20%混入验证集,这样验证集中既有seen classes, 也有unseen classes
train_indices, drop_indices = train_test_split(train_indices, test_size=split_size, random_state=9, shuffle=True)
eval_indices.extend(drop_indices)
x_train, x_eval, y_train, y_eval, s_train, s_eval = self.xf[train_indices], self.xf[eval_indices], \
self.y[train_indices], self.y[eval_indices], \
self.s[train_indices], self.s[eval_indices]
print("training data shape:")
print("feature: ", x_train.shape)
print("label: ", y_train.shape)
print("attributes: ", s_train.shape)
print("evaluating data shape:")
print("feature: ", x_eval.shape)
print("label: ", y_eval.shape)
print("attributes: ", s_eval.shape)
return x_train, x_eval, y_train, y_eval, s_train, s_eval
def _get_indices(self, classes):
"""
根据所给类别,筛选得到这些类别对应的indices
:param classes: 类别子集
:return: 索引
"""
with open(self.label_path) as f:
pairs = f.readlines()
indices = [id for id, pair in enumerate(pairs) if pair.split()[1] in classes]
return indices
class FeatureExtractor:
def __init__(self, pb_dir):
self.sess = tf.Session()
self._load_pb(pb_dir)
def _load_pb(self, pb_dir):
output_graph_def = tf.GraphDef()
with gfile.FastGFile(pb_dir, "rb") as f:
output_graph_def.ParseFromString(f.read())
tf.import_graph_def(output_graph_def, name="")
def _get_feature(self, img):
img = plt.imread(img)
img = img / 255
if len(img.shape)==2:
one_channel = img[:,:,np.newaxis]
img = np.concatenate((one_channel, one_channel, one_channel), axis=-1)
encoder = self.sess.graph.get_tensor_by_name("encoder/MaxPool:0")
feature = self.sess.run(encoder, feed_dict={"x:0": [img]})
feature = list(np.reshape(feature, [1, -1]))
return feature
def extract(self, imgs):
features = []
for img in imgs:
feature = self._get_feature(img)[0]
features.append(feature)
return np.array(features)