-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathec.py
620 lines (550 loc) · 24.7 KB
/
ec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
"""
ExCov Functions
Modified by: Michelle Aluf Medina
"""
import miscfunctions as misc
import logging
import nusmv
def receive_subsets(num_subsets):
"""
Receive user input of set of subsets
Input:
num_subsets: number of subsets to be input
Output:
subsets_arr: array of the subsets
"""
j = 0
subsets_arr = list()
for i in range(1, (num_subsets + 1)):
subset = set()
prompt_size = 'Enter the number of elements in subset ' + str(i) + ': '
num_elements = misc.int_input(out_str=prompt_size)
print('Enter the numbers in subset ' + str(i) + ': ')
while j < num_elements:
temp = misc.int_input()
subset.add(temp)
j += 1
print('Your subset is ' + str(subset) + '\n')
subsets_arr.append(subset)
j = 0
print('Your subsets are: ' + str(subsets_arr) + '\n')
return subsets_arr
def read_ec(filename):
"""
Parse the ExCov input file for list of ExCov problems
Find file format in README
Input:
filename: ExCov input file
Output:
uni_list: List of universes of all problems
subsets_list: List of sets of subsets for each problem
num_prob: Number of problems in the input file
"""
logging.info('Opening ExCov input file')
in_data = open(filename, "r")
# Data for return
uni_list = list()
subsets_list = list()
num_prob = 0
# Temp collection variables
num_subsets = 0
subset_count = 0
sset = list()
sset_list = list()
uni = list()
# Run through the lines of data in the file
for line in in_data:
tokens = line.split()
if len(tokens) != 0 and tokens[0].lower() == 'p':
# Validation of file input
if tokens[1].lower() == "excov":
num_subsets = int(tokens[2])
num_prob += 1
else:
print("Problem " + str(num_prob) + " not in excov format. Edit and resubmit.")
logging.warning('Problem ' + str(num_prob) + ' not in excov format. Edit file and resubmit.')
return -1
# If lists are NOT empty
if uni and sset_list:
if subset_count != num_subsets:
logging.warning('Number of subsets does not match that indicated for problem ' + str(num_prob))
subset_count = 0
uni_list.append(uni[:])
subsets_list.append(sset_list[:])
uni.clear()
sset_list.clear()
elif len(tokens) != 0 and tokens[0].lower() == 'u':
for tok in tokens[1:]:
element = int(tok)
if element == 0:
logging.info('Universe: ' + str(uni))
else:
uni.append(element)
elif len(tokens) != 0 and tokens[0].lower() == 's':
for tok in tokens[1:]:
element = int(tok)
if element == 0:
subset_count += 1
logging.info('Subset ' + str(subset_count) + ' of ' + str(num_subsets) + ': ' + str(sset))
sset_list.append(sset[:])
sset.clear()
else:
sset.append(element)
# Reached the end, input last problem's data
subset_count = 0
uni_list.append(uni[:])
subsets_list.append(sset_list[:])
uni.clear()
sset_list.clear()
logging.info('Total number of ExCov problems: ' + str(num_prob))
return uni_list, subsets_list, num_prob
def smv_gen(universes, subsets, num_probs):
"""
Loop through array of ExCov problems and generate two smv files for each (with and without tags)
Input:
universes: the list of universes
subsets: The list of sets of subsets
num_probs: The number of problems (nuumber of universes and subset sets)
Output:
ec_smv: list of smv file names with tags
ec_smv_nt: list of smv file names without tags
ec_outputs: list of outputs of interest (ExCov output) for each problem
max_sums: list of maximum sum of each problem
"""
ec_smv = list()
ec_smv_nt = list()
ec_outputs = list()
max_sums = list()
for uni, sets in zip(universes, subsets):
logging.info('Universe is: ' + str(uni) + '\n')
# Generate binary universe representation
logging.info('Converting universe to binary format.')
uni_bin = list()
for i in range(0,len(uni)):
uni_bin.append('1')
uni_bin_s = ''.join(str(e) for e in uni_bin)
logging.info('Universe in binary is: ' + uni_bin_s + '\n')
# Convert binary universe to integer representation
uni_bin_int = int(uni_bin_s, base=2)
ec_outputs.append(uni_bin_int)
logging.info('Integer convesion of binary universe is: ' + str(uni_bin_int))
# Convert subsets to binary representation
sets_bin = list()
for i in range(0, len(sets)):
sets_bin.append(bin_rep(sets[i], uni))
logging.info('Set ' + str(i+1) + ' in binary is: ' + str(sets_bin[-1]))
# Convert binary to integer representation
sets_bin_int = list()
for i in range(0, len(sets_bin)):
sets_bin_int.append(int(sets_bin[i], base=2))
logging.info('These sets will be treated as the following integers: ' + str(sets_bin_int) + '\n')
max_sums.append(sum(sets_bin_int))
# Create EC NuSMV File
# With tags
logging.info('Generating NuSMV file with tags...')
ec_smv_name = file_name_smv(uni, len(uni))
max_tag_id = list()
print_smv_ec(ec_smv_name, uni, sets, sets_bin, sets_bin_int, uni_bin_int, uni_bin_s, max_tag_id)
logging.info('Generated NuSMV file with tags')
ec_smv.append(ec_smv_name)
# Without tags
logging.info('Generating NuSMV file without tags...')
ec_smv_name_nt = 'NT_' + ec_smv_name
print_smv_ec_nt(ec_smv_name_nt, uni, sets, sets_bin, sets_bin_int, uni_bin_int, uni_bin_s)
logging.info('Generated NuSMV file without tags')
ec_smv_nt.append(ec_smv_name_nt)
return ec_smv, ec_smv_nt, ec_outputs, max_sums
def print_ec_menu():
"""
Print menu for ExCov options to screen.
"""
print('What would you like to do on this universe and set of subsets:\n')
print('\t[1] Check if an exact cover exists')
print('\t[2] Find total number of different exact covers')
print('\t[3] Return to Main Menu')
def file_name_smv(universe_array, arr_length):
"""
Generate smv file name for given ExCov problem using universe.
Inputs:
universe_array: the given universe
arr_length: number of elements in universe
Output:
filename: smv file name for ExCov network with formatting
"""
filename = 'autoExCov_'
for i in range(arr_length):
filename += str(universe_array[i]) + '_'
filename += 'Universe_{0}.smv'
return misc.file_name_cformat(filename)
def print_smv_ec(filename, universe_array, ss_array, bin_ss, int_ss, int_uni,
bin_uni, max_tag_id):
"""
Print out the ExCov network description to the smv file
Input:
filename: the smv filename to be used
universe_array: universe set defining the ExCov
ss_array: array of subsets that may take part in the ExCov
bin_ss: array of binary subsets
int_ss: array of integer subsets
int_uni: integer universe array
bin_uni: binary universe array
max_tag_id: empty array containing the last tag element
"""
# ----------------
# BEGINNING OF FILE CREATION
# ----------------
# Open file and write header into file
f = open(filename, 'w')
f.write('--Exact Cover\n' + '--Universe:\t' + str(universe_array)
+ '\tBit Form:\t' + bin_uni)
f.write('\n--Set of Subsets:\t' + str(ss_array) + '\tBit Form:\t'
+ str(bin_ss) + '\n')
f.write('--This will be treated as k = ' + str(int_uni) + ' and ss = '
+ str(int_ss) + '\n-------------------------------\n')
# ----------------
# Find row locations of split junctions
split_j_loc = [0]
for i in range(0, len(ss_array) - 1):
split_j_loc.append(int_ss[i] + split_j_loc[i])
# Calculate number of split junctions
num_split_j = sum(split_j_loc) + len(split_j_loc)
max_tag_id.append(num_split_j - 1)
sum_total = sum(int_ss)
# ----------------
# Write beginning of module and variable definitions
f.write('MODULE main\n' + 'DEFINE\n' + '\tk := ' + str(int_uni)
+ ';\n\nVAR\n')
f.write('\trow: 0..' + str(sum_total) + ';\n')
f.write('\tcolumn: 0..' + str(sum_total) + ';\n')
f.write('\tjunction: {pass, split, forceDwn};\n')
f.write('\tdir: {dwn, diag};\n')
f.write('\tflag: boolean;\n\n')
f.write('\ttag: array 0..' + str(num_split_j - 1) + ' of boolean;\n')
# Write assignment definitions
f.write('ASSIGN\n')
f.write('\tinit(row) := 0;\n')
f.write('\tinit(column) := 0;\n')
f.write('\tinit(junction) := split;\n')
f.write('\tinit(dir) := dwn;\n')
f.write('\tinit(flag) := FALSE;\n\n')
for i in range(0, num_split_j):
if (((i + 1) % 5) == 0) or (i == num_split_j - 1):
f.write('\tinit(tag[' + str(i) + ']) := FALSE;\n')
else:
f.write('\tinit(tag[' + str(i) + ']) := FALSE;\t')
# ----------------
# Write row transitions to file
f.write('\n\n\t--Always advance to next row\n')
f.write('\tnext(row) := (row + 1) mod ' + str(sum_total + 1) + ';\n')
# Write flag transitions to file
f.write('\n\t--Flag turns on when row is ' + str(sum_total) + '\n')
f.write('\tnext(flag) := (next(row) = ' + str(sum_total)
+ ' ? TRUE : FALSE);\n')
# Write junction transitions to file
# Find all split junctions
f.write('\n\t--Split junctions at rows ')
for i in range(0, len(split_j_loc)):
if i < len(split_j_loc) - 1:
f.write(str(split_j_loc[i]) + ', ')
else:
f.write(str(split_j_loc[i]))
f.write(' and forceDwn junctions at (r,c): ')
rc_f_dwn = []
# Find all frcDwn junctions
for i in range(0, len(ss_array)):
for j in range(i + 1, len(ss_array)):
if not(set(ss_array[i]).isdisjoint(set(ss_array[j]))):
c = int_ss[i]
r = sum(int_ss[0:j])
rc_f_dwn.append([r, c])
f.write('(' + str(r) + ',' + str(c) + ') ')
for k in range(i + 1, j):
c = int_ss[i] + int_ss[k]
rc_f_dwn.append([r, c])
f.write('(' + str(r) + ',' + str(c) + ') ')
ctemp = sum(int_ss[i:k + 1])
if ctemp > c:
rc_f_dwn.append([r, ctemp])
f.write('(' + str(r) + ',' + str(ctemp) + ') ')
f.write('\n\n\tnext(junction) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t(')
for i in range(0, len(rc_f_dwn)):
if i < len(rc_f_dwn) - 1:
f.write('((next(row) = ' + str(rc_f_dwn[i][0])
+ ')&(next(column) = ' + str(rc_f_dwn[i][1]) + '))|')
else:
f.write('((next(row) = ' + str(rc_f_dwn[i][0])
+ ')&(next(column) = ' + str(rc_f_dwn[i][1])
+ '))): forceDwn;\n\t\t\t\t\t\t(')
for i in range(0, len(split_j_loc)):
if i < len(split_j_loc) - 1:
f.write('(next(row) = ' + str(split_j_loc[i]) + ')|')
else:
f.write('(next(row) = ' + str(split_j_loc[i]) + ')): split;\n')
f.write('\t\t\t\t\t\tTRUE: pass;\n\t\t\t\t\tesac;\n\n')
# Write direction transitions to file
f.write('\t--Decide next direction for move by to current junction\n')
f.write('\tnext(dir) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t')
f.write('(junction = split): {dwn, diag};\n\t\t\t\t\t\t')
f.write('(junction = pass): dir;\n\t\t\t\t\t\t')
f.write('(junction = forceDwn): dwn;\n\t\t\t\t\t\t')
f.write('TRUE: {dwn, diag};\n\t\t\t\t\tesac;\n\n')
# Write column transitions to file
f.write('\t--If diag, increase column, otherwise dwn, same column\n')
f.write('\tnext(column) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t')
f.write('(next(row) = 0): 0;\n\t\t\t\t\t\t')
f.write('(next(dir) = diag): (column + 1) mod ' + str(sum_total)
+ ';\n\t\t\t\t\t\t')
f.write('(next(dir) = dwn): column;\n\t\t\t\t\t\t')
f.write('TRUE: column;\n\t\t\t\t\tesac;\n\n')
# Write tag transitions to file
f.write('\t--Set tag TRUE if curr row = split, dir is diag\n')
i = 0
while i < num_split_j:
for j in range(0, len(split_j_loc)):
for k in range(0, split_j_loc[j] + 1):
f.write('\tnext(tag[' + str(i)
+ ']) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t')
f.write('(row = ' + str(split_j_loc[j])
+ ') & (column = ' + str(k)
+ ') & next(dir) = diag: TRUE;\n\t\t\t\t\t\t')
f.write('(next(row) = 0): FALSE;\n\t\t\t\t\t\t')
f.write('TRUE: tag[' + str(i) + '];\n\t\t\t\t\tesac;\n\n')
i += 1
# ----------------
# Write specifications
f.write('LTLSPEC\tNAME\tltl_k := G! ((flag = TRUE) & (column = k));\n')
f.write('CTLSPEC\tNAME\tctl_k := EF ((flag = TRUE) & (column = k));\n')
# ----------------
# Close file
f.close()
def print_smv_ec_nt(filename, universe_array, ss_array, bin_ss, int_ss, int_uni,
bin_uni):
"""
Print out the ExCov network description to the smv file
Input:
filename: the smv filename to be used
universe_array: universe set defining the ExCov
ss_array: array of subsets that may take part in the ExCov
bin_ss: array of binary subsets
int_ss: array of integer subsets
int_uni: integer universe array
bin_uni: binary universe array
"""
# ----------------
# BEGINNING OF FILE CREATION
# ----------------
# Open file and write header into file
f = open(filename, 'w')
f.write('--Exact Cover\n' + '--Universe:\t' + str(universe_array)
+ '\tBit Form:\t' + bin_uni)
f.write('\n--Set of Subsets:\t' + str(ss_array) + '\tBit Form:\t'
+ str(bin_ss) + '\n')
f.write('--This will be treated as k = ' + str(int_uni) + ' and ss = '
+ str(int_ss) + '\n-------------------------------\n')
# ----------------
# Find row locations of split junctions
split_j_loc = [0]
for i in range(0, len(ss_array) - 1):
split_j_loc.append(int_ss[i] + split_j_loc[i])
sum_total = sum(int_ss)
# ----------------
# Write beginning of module and variable definitions
f.write('MODULE main\n' + 'DEFINE\n' + '\tk := ' + str(int_uni)
+ ';\n\nVAR\n')
f.write('\trow: 0..' + str(sum_total) + ';\n')
f.write('\tcolumn: 0..' + str(sum_total) + ';\n')
f.write('\tjunction: {pass, split, forceDwn};\n')
f.write('\tdir: {dwn, diag};\n')
f.write('\tflag: boolean;\n\n')
# Write assignment definitions
f.write('ASSIGN\n')
f.write('\tinit(row) := 0;\n')
f.write('\tinit(column) := 0;\n')
f.write('\tinit(junction) := split;\n')
f.write('\tinit(dir) := dwn;\n')
f.write('\tinit(flag) := FALSE;\n\n')
# ----------------
# Write row transitions to file
f.write('\n\n\t--Always advance to next row\n')
f.write('\tnext(row) := (row + 1) mod ' + str(sum_total + 1) + ';\n')
# Write flag transitions to file
f.write('\n\t--Flag turns on when row is ' + str(sum_total) + '\n')
f.write('\tnext(flag) := (next(row) = ' + str(sum_total)
+ ' ? TRUE : FALSE);\n')
# Write junction transitions to file
# Find all split junctions
f.write('\n\t--Split junctions at rows ')
for i in range(0, len(split_j_loc)):
if i < len(split_j_loc) - 1:
f.write(str(split_j_loc[i]) + ', ')
else:
f.write(str(split_j_loc[i]))
f.write(' and forceDwn junctions at (r,c): ')
rc_f_dwn = []
# Find all frcDwn junctions
for i in range(0, len(ss_array)):
for j in range(i + 1, len(ss_array)):
if not(set(ss_array[i]).isdisjoint(set(ss_array[j]))):
c = int_ss[i]
r = sum(int_ss[0:j])
rc_f_dwn.append([r, c])
f.write('(' + str(r) + ',' + str(c) + ') ')
for k in range(i + 1, j):
c = int_ss[i] + int_ss[k]
rc_f_dwn.append([r, c])
f.write('(' + str(r) + ',' + str(c) + ') ')
ctemp = sum(int_ss[i:k + 1])
if ctemp > c:
rc_f_dwn.append([r, ctemp])
f.write('(' + str(r) + ',' + str(ctemp) + ') ')
f.write('\n\n\tnext(junction) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t(')
for i in range(0, len(rc_f_dwn)):
if i < len(rc_f_dwn) - 1:
f.write('((next(row) = ' + str(rc_f_dwn[i][0])
+ ')&(next(column) = ' + str(rc_f_dwn[i][1]) + '))|')
else:
f.write('((next(row) = ' + str(rc_f_dwn[i][0])
+ ')&(next(column) = ' + str(rc_f_dwn[i][1])
+ '))): forceDwn;\n\t\t\t\t\t\t(')
for i in range(0, len(split_j_loc)):
if i < len(split_j_loc) - 1:
f.write('(next(row) = ' + str(split_j_loc[i]) + ')|')
else:
f.write('(next(row) = ' + str(split_j_loc[i]) + ')): split;\n')
f.write('\t\t\t\t\t\tTRUE: pass;\n\t\t\t\t\tesac;\n\n')
# Write direction transitions to file
f.write('\t--Decide next direction for move by to current junction\n')
f.write('\tnext(dir) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t')
f.write('(junction = split): {dwn, diag};\n\t\t\t\t\t\t')
f.write('(junction = pass): dir;\n\t\t\t\t\t\t')
f.write('(junction = forceDwn): dwn;\n\t\t\t\t\t\t')
f.write('TRUE: {dwn, diag};\n\t\t\t\t\tesac;\n\n')
# Write column transitions to file
f.write('\t--If diag, increase column, otherwise dwn, same column\n')
f.write('\tnext(column) := \n\t\t\t\t\tcase\n\t\t\t\t\t\t')
f.write('(next(row) = 0): 0;\n\t\t\t\t\t\t')
f.write('(next(dir) = diag): (column + 1) mod ' + str(sum_total)
+ ';\n\t\t\t\t\t\t')
f.write('(next(dir) = dwn): column;\n\t\t\t\t\t\t')
f.write('TRUE: column;\n\t\t\t\t\tesac;\n\n')
# ----------------
# Write specifications
f.write('LTLSPEC\tNAME\tltl_k := G! ((flag = TRUE) & (column = k));\n')
f.write('CTLSPEC\tNAME\tctl_k := EF ((flag = TRUE) & (column = k));\n')
# ----------------
# Close file
f.close()
def bin_rep(subset, universe):
"""
Generate binary encoding of given ExCov problem
Input:
arr: subset being converted into binary representation
universe: the universe array
Output:
bin_rep: binary representation of the given subset (string)
"""
temp_bin = []
for i in range(0, len(universe)):
if universe[i] in subset:
temp_bin.append('1')
else:
temp_bin.append('0')
temp_bin.reverse()
bin_rep = ''.join(str(e) for e in temp_bin)
return bin_rep
def run_nusmv(universe, subsets, out_interest, smv_t_arr, smv_nt_arr, wbook, wsheet, xl_fn):
"""
Loop through array of ExCov smv files and run NuSMV. Save results in Excel
Input:
universes: array of ExCov universes problems
subsets: array of ExCov sets of subsets
out_interest: array of relevant exact cover outputs
smv_t_arr: array of smv files using tagging
smv_nt_arr: array of smv files not using tagging
wbook: The excel workbook
wsheet: the excel worksheet
xl_fn: excel file name
"""
for index, (uni, sets) in enumerate(zip(universe, subsets)):
# Save index, universe, num subsets, subsets, and filenames in excel
logging.info('Inputting ID, uni, num subsets, and set data into Excel...')
__ = wsheet.cell(column=1, row=(index + 4), value=index)
__ = wsheet.cell(column=2, row=(index + 4), value=repr(uni))
__ = wsheet.cell(column=3, row=(index + 4), value=len(sets))
__ = wsheet.cell(column=4, row=(index + 4), value=repr(sets))
__ = wsheet.cell(column=5, row=(index + 4), value=smv_t_arr[index])
__ = wsheet.cell(column=6, row=(index + 4), value=smv_nt_arr[index])
wbook.save(xl_fn)
# Run NuSMV on with tags
out_fn, out_rt = nusmv.call_nusmv_pexpect_singleout(smv_t_arr[index], 2, out_interest[index])
# Parse output files:
ltl_res = nusmv.get_spec_res(out_fn[0])
logging.info('LTL Result: ' + ltl_res)
ctl_res = nusmv.get_spec_res(out_fn[1])
logging.info('CTL Result: ' + ctl_res)
if ltl_res == 'false' and ctl_res == 'true':
__ = wsheet.cell(column=7, row=(index + 4), value='YES')
elif ltl_res == 'true' and ctl_res == 'false':
__ = wsheet.cell(column=7, row=(index + 4), value='NO')
else:
__ = wsheet.cell(column=7, row=(index + 4), value='INVALID RESULT')
logging.info('Saving Tags data in Excel')
__ = wsheet.cell(column=8, row=(index + 4), value=out_fn[0])
__ = wsheet.cell(column=9, row=(index + 4), value=ltl_res)
__ = wsheet.cell(column=10, row=(index + 4), value=out_rt[0])
__ = wsheet.cell(column=11, row=(index + 4), value=out_fn[1])
__ = wsheet.cell(column=12, row=(index + 4), value=ctl_res)
__ = wsheet.cell(column=13, row=(index + 4), value=out_rt[1])
wbook.save(xl_fn)
# Run NuSMV on no tags
out_fn, out_rt = nusmv.call_nusmv_pexpect_singleout(smv_nt_arr[index], 2, out_interest[index])
# Parse output files:
ltl_res = nusmv.get_spec_res(out_fn[0])
logging.info('LTL Result: ' + ltl_res)
ctl_res = nusmv.get_spec_res(out_fn[1])
logging.info('CTL Result: ' + ctl_res)
logging.info('Saving Tags data in Excel')
__ = wsheet.cell(column=14, row=(index + 4), value=out_fn[0])
__ = wsheet.cell(column=15, row=(index + 4), value=ltl_res)
__ = wsheet.cell(column=16, row=(index + 4), value=out_rt[0])
__ = wsheet.cell(column=17, row=(index + 4), value=out_fn[1])
__ = wsheet.cell(column=18, row=(index + 4), value=ctl_res)
__ = wsheet.cell(column=19, row=(index + 4), value=out_rt[1])
wbook.save(xl_fn)
def run_nusmv_bmc(universe, subsets, out_interest, max_sums, smv_t_arr, smv_nt_arr, wbook, wsheet, xl_fn):
"""
Loop through array of ExCov smv files and run NuSMV. Save results in Excel
Input:
universes: array of ExCov universes problems
subsets: array of ExCov sets of subsets
out_interest: array of relevant exact cover outputs
max_sums: the maximum number of rows for each problem
smv_t_arr: array of smv files using tagging
smv_nt_arr: array of smv files not using tagging
wbook: The excel workbook
wsheet: the excel worksheet
xl_fn: excel file name
"""
for index, (uni, sets) in enumerate(zip(universe, subsets)):
# Save index, universe, num subsets, subsets, and filenames in excel
logging.info('Inputting ID, uni, num subsets, and set data into Excel...')
__ = wsheet.cell(column=1, row=(index + 4), value=index)
__ = wsheet.cell(column=2, row=(index + 4), value=repr(uni))
__ = wsheet.cell(column=3, row=(index + 4), value=len(sets))
__ = wsheet.cell(column=4, row=(index + 4), value=repr(sets))
__ = wsheet.cell(column=5, row=(index + 4), value=max_sums[index])
__ = wsheet.cell(column=6, row=(index + 4), value=smv_t_arr[index])
__ = wsheet.cell(column=7, row=(index + 4), value=smv_nt_arr[index])
wbook.save(xl_fn)
# Run NuSMV on with tags
out_res, out_rt = nusmv.call_nusmv_pexpect_bmc(smv_t_arr[index], 2, out_interest[index], max_sums[index])
logging.info('Saving Tags data in Excel')
__ = wsheet.cell(column=8, row=(index + 4), value=out_res)
__ = wsheet.cell(column=9, row=(index + 4), value=out_rt)
wbook.save(xl_fn)
# Run NuSMV on no tags
out_res, out_rt = nusmv.call_nusmv_pexpect_bmc(smv_nt_arr[index], 2, out_interest[index], max_sums[index])
logging.info('Saving Tags data in Excel')
__ = wsheet.cell(column=10, row=(index + 4), value=out_res)
__ = wsheet.cell(column=11, row=(index + 4), value=out_rt)
wbook.save(xl_fn)