-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkov.py
314 lines (272 loc) · 7.34 KB
/
markov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""http://bit.ly/openwest-py-17
http://www.gutenberg.org/ebooks/74
python3 -m idlelib.idle
REPL - Read, evaluate, print, loop
PEP 8 - Conventions for Python coding
This module helps create Markov Chains
>>> m = Markov('ab')
>>> m.predict('a')
'b'
>>> m.predict('c')
Traceback (most recent call last):
...
KeyError: 'c'
>>> get_table('ab')
{'a': {'b': 1}}
>>> random.seed(42)
>>> m2 = Markov('Find a city, find yourself a city to live in')
>>> m2.predict('c')
'i'
>>> m2.predict('i')
'n'
>>> m2.predict('t')
'o'
>>> test_predict(m2, 'c')
'cind a ty, citourse f'
"""
import argparse
import random
import sys
# This is a comment
class CharIter:
def __init__(self, lines):
self.data = iter(lines)
self.line = None
self.pos = 0
def __iter__(self):
return self
def __next__(self):
while 1:
if self.line is None:
self.line = next(self.data)
try:
char = self.line[self.pos]
except IndexError:
self.line = next(self.data)
self.pos = 0
else:
self.pos += 1
return char
class WordIter(CharIter):
def __next__(self):
while 1:
if self.line is None:
self.line = next(self.data)
try:
words = self.line.split()
word = words[self.pos]
except IndexError:
self.line = next(self.data)
self.pos = 0
else:
self.pos += 1
return word
# this hurts memory b/c it returns everything in a big list
def char_gen_old(lines):
res = []
for line in lines:
for char in line:
res.append(char)
return res
# list comprehension
def char_gen_lc(lines):
res = [char for line in lines for char in line]
return res
# generator expression - list comprehension for generators
def char_gen_exp(lines):
res = (char for line in lines for char in line)
return res
# generators are denoted by yield key word
# Generators do lazy loading like the iter examples above making them very performant
# this doesn't return a list, but a generator that doesn't run until called
# generators remember where they are so they become exhausted
# generators can be infinite (don't support slicing)
def char_gen(lines):
for line in lines:
for char in line:
yield char
def word_gen(lines):
for line in lines:
for word in line.split():
yield word
def window_gen(data, size):
win = []
for thing in data:
win.append(thing)
if len(win) == size:
yield win
win = win[1:]
for i in range(len(win)):
yield win[i:]
class Markov:
"""
>>> m3 = Markov('Find a city, find yourself a city to live in', 3)
>>> m3.predict('cit')
'y'
"""
def __init__(self, data, size=1):
#self.table = get_table(data)
self.tables = []
for i in range(size):
self.tables.append(get_table_old(data, i+1))
def predict(self, data_in):
table = self.tables[len(data_in)-1]
options = table[data_in]
possible = ''
for key, count in options.items():
possible += key * count
return random.choice(possible)
class CharMarkov(Markov):
"""
>>> lines = ['abc', 'def', 'hi']
>>> cm = CharMarkov(lines, 2)
>>> cm.predict('cd')
'e'
"""
def __init__(self, lines, size=1):
self.tables = []
data = list(char_gen(lines))
for i in range(size):
self.tables.append(get_table(data, i+1))
def just_name(klass):
def name(self):
return '{}'.format(self.__class__.__name__)
klass.__str__ = name
return klass
@just_name
class WordMarkov(Markov):
"""
>>> lines = ['my name is', 'matt', 'bye']
>>> wm = WordMarkov(lines, 2)
>>> wm.predict('is')
'matt'
"""
def __init__(self, lines, size=1):
self.tables = []
data = list(word_gen(lines))
for i in range(size):
self.tables.append(get_table(data, i+1))
def predict(self, data_in):
table = self.tables[len(data_in.split())-1]
options = table[data_in]
possible = []
for key, count in options.items():
for i in range(count):
possible.append(key)
return random.choice(possible)
def test_predict(m, start, numchars=1):
res = [start]
for i in range(20):
let = m.predict(start)
res.append(let)
start = ''.join(let[-numchars:])
return ''.join(res)
def get_table(data, size=1, join_char=''):
results = {}
for tokens in window_gen(data, size+1):
item = join_char.join(tokens[:size])
try:
output = tokens[size]
except IndexError:
break
inner_dict = results.get(item, {})
inner_dict.setdefault(output, 0)
inner_dict[output] += 1
results[item] = inner_dict
return results
def get_table_old(line, numchars=1):
result = {}
for i, _ in enumerate(line):
chars = line[i:i+numchars]
try:
next_char = line[i+numchars]
except IndexError:
break
char_dict = result.get(chars, {})
char_dict.setdefault(next_char, 0)
char_dict[next_char] += 1
result[chars] = char_dict
return result
def repl(m):
while 1:
try:
txt = input(">")
except KeyboardInterrupt:
break
res = m.predict(txt)
print(res)
def add(x, y):
"this adds x and y"
return x+y
# args = (2,3)
# add(*args)
# kw = {'x':2, 'y':3}
# add(**kw)
def foo(*args, **kwargs):
print(args, kwargs)
# can curry in Python - closures
def genadder(suffix):
def adder(x):
return x+ suffix
return adder
# add5 = genadder(5)
# add5(10)
# addtxt = genadder('.txt')
# addtxt('data')
# 'data.txt'
#def iden(func):
# return func
#add_new = iden(add)
#add_new(6, 7)
# Adding decorators - print functions inside
# may be very useful in a timer
def iden2(f):
def inner(*args, **kwargs):
print("Before", args, kwargs)
res = f(*args, **kwargs)
print("AFTER", res)
return res
return inner
#add_new2 = iden2(add)
#add_new2(6, 7)
#import time
#def slow(x):
# time.sleep(x)
## return x
##
##def timing(func):
## time1 = time()
## func()
## time2 = time()
## print('{} took {}'.format(func, time2-time1))
##
##@timing
##def greet(name):
## print('hi {}'.format(name))
#name = 'matt'
#print(name)
def main(args):
p = argparse.ArgumentParser()
p.add_argument('-f', '--file', help='input file')
p.add_argument('-s', '--size', help="Markov size",
default=1, type=int)
p.add_argument('--encoding', help='File encoding',
default='utf8')
p.add_argument('-t', '--test', action='store_true', help='Run tests')
opt = p.parse_args(args)
if opt.file:
with open(opt.file, encoding=opt.encoding) as fin:
#with open(opt.file) as fin:
data = fin.read()
m = Markov(data, size=opt.size)
repl(m)
elif opt.test:
import doctest
doctest.testmod()
if __name__ == '__main__':
# When we are executing this file
import doctest
doctest.testmod()
# main(sys.argv[1:])
else:
print("not running")