forked from pycaret/pycaret
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup_nightly.py
60 lines (49 loc) · 2.1 KB
/
setup_nightly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (C) 2019-2020 Moez Ali <moez.ali@queensu.ca>
# License: MIT, moez.ali@queensu.ca
import time
from setuptools import find_packages, setup
nightly_version = "3.0.0"
nightly_readme = f"This is a nightly version of the [PyCaret](https://pypi.org/project/pycaret/) library, intended as a preview of the upcoming {nightly_version} version. It may contain unstable and untested code.\n"
def readme():
with open("README.md") as f:
README = f.read()
return README
with open("requirements.txt") as f:
required = f.read().splitlines()
with open("requirements-optional.txt") as f:
required_optional = f.read()
with open("requirements-test.txt") as f:
required_test = f.read().splitlines()
setup(
name="pycaret-nightly",
version=str(nightly_version) + ".dev" + str(int(time.time())),
description="Nightly version of PyCaret - An open source, low-code machine learning library in Python.",
long_description=nightly_readme + readme(),
long_description_content_type="text/markdown",
url="https://github.com/pycaret/pycaret-nightly",
author="Moez Ali",
author_email="moez.ali@queensu.ca",
license="MIT",
classifiers=[
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
packages=find_packages(include=["pycaret*"]),
include_package_data=True,
install_requires=required,
extras_require={
"analysis": required_optional.split("\n\n")[0].splitlines(),
"models": required_optional.split("\n\n")[1].splitlines(),
"tuners": required_optional.split("\n\n")[2].splitlines(),
"mlops": required_optional.split("\n\n")[3].splitlines(),
"nlp": required_optional.split("\n\n")[4].splitlines(),
"full": required_optional.splitlines(),
},
tests_require=required_test,
python_requires=">=3.7",
)