-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
692 lines (546 loc) · 26.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
import base58
import hashlib
from hashlib import sha256, sha512
import base64
import binascii
import json
import os
import pprint
import cryptography
from cryptography.hazmat.primitives.asymmetric.ed25519 import Ed25519PrivateKey, Ed25519PublicKey
from cryptography.exceptions import InvalidSignature
from cryptography.hazmat.primitives.asymmetric import ec
from ecpy.curves import Curve
from ecpy.ecdsa import ECDSA
from ecpy.keys import ECPrivateKey, ECPublicKey
_CURVE=Curve.get_curve("secp256k1")
_SIGNER=ECDSA("DER")
import time
def sha512_first_half(message: bytes) -> bytes:
"""
Returns the first 32 bytes of SHA-512 hash of message.
Args:
message: Bytes input to hash.
Returns:
The first 32 bytes of SHA-512 hash of message.
"""
return sha512(message).digest()[:32]
def doubleSha256(hex):
bin = binascii.unhexlify(hex)
hash = hashlib.sha256(bin).digest()
hash2 = hashlib.sha256(hash).digest()
return hash2
def hexToBase58(key):
payload_str = '1C'+key
payload_unhex = binascii.unhexlify(payload_str)
checksum = doubleSha256(payload_str)[0:4]
return base58.b58encode(payload_unhex+checksum, base58.XRP_ALPHABET)
def base58ToHex(b58_str):
decb58 = base58.b58decode(b58_str, base58.XRP_ALPHABET)
payload_unhex = decb58[:-4]
checksum = decb58[-4:]
payload_hex = binascii.hexlify(payload_unhex)
#print("payloadstr : ",payload_hex[2:])
check = (checksum == doubleSha256(payload_hex)[0:4])
if not check:
print("Checksum check: ", (check))
return payload_hex[2:]
def base58ToBytes(b58_str):
decb58 = base58.b58decode(b58_str, base58.XRP_ALPHABET)
payload_unhex = decb58[:-4]
checksum = decb58[-4:]
payload_hex = binascii.hexlify(payload_unhex)
check = (checksum == doubleSha256(payload_hex)[0:4])
if not check:
print("Checksum check: ", (check))
return payload_unhex[1:]
def bytesToBase58(b58_bytes):
return hexToBase58(b58_bytes.hex())
def decodeValList(json_list):
vl = json.loads(base64.b64decode(json_list['blob']))['validators']
mlist = []
for v in vl:
mval = hexToBase58(v['validation_public_key'])
mlist.append(mval)
return mlist
def decodeNextField(barray):
if len(barray) < 2:
return None
cbyteindex = 0
cbyte = barray[cbyteindex]
ctype = ((cbyte & 0xf0) >> 4)
cfieldid = (cbyte & 0x0f)
typefield = cbyte
if (ctype == 0x7):
# blob
if cfieldid == 0:
# larger field id
cbyteindex += 1
# int.from_bytes(manifest_bytes[cbyteindex],'big')
cfieldid = barray[cbyteindex]
typefield = barray[:2]
cbyteindex += 1
cfieldlen = barray[cbyteindex]
cbyteindex += 1
return (typefield, barray[cbyteindex:(cbyteindex+cfieldlen)], barray[(cbyteindex+cfieldlen):])
elif (ctype == 0x2):
# int32
cfieldlen = 4
elif (ctype == 0xf):
# int8
cfieldlen = 1
elif (ctype == 0x1):
# int16
cfieldlen = 2
elif (ctype == 0x03):
# int64
cfieldlen = 8
else:
print("WARN: Unparsed field type")
cfieldlen = 1
cbyteindex += 1
return (typefield, barray[cbyteindex:(cbyteindex+cfieldlen)], barray[(cbyteindex+cfieldlen):])
def decodeManifest(manifest_blob):
manifest_dec = {}
manifest_bytes = base64.b64decode(manifest_blob)
while len(manifest_bytes) > 0:
mtypefield, data, manifest_bytes = decodeNextField(manifest_bytes)
if type(mtypefield) == bytes:
mtypefield = int.from_bytes(mtypefield, 'big')
if mtypefield == 0x24:
manifest_dec['sequence'] = int.from_bytes(data, 'big')
elif mtypefield == 0x71:
manifest_dec['master_public_key'] = bytesToBase58(data)
elif mtypefield == 0x73:
manifest_dec['signing_public_key'] = bytesToBase58(data)
elif mtypefield == 0x76:
manifest_dec['signature'] = binascii.b2a_hex(data)#.hexlify(data)#data.hex()#
elif mtypefield == 0x7012:
manifest_dec['master_signature'] = binascii.b2a_hex(data)#.hexlify(data) #data.hex() #
elif mtypefield == 0x77:
manifest_dec['domain'] = data #.hex() #binascii.b2a_hex(data)
else:
print("Unexpected parsed field: ",
mtypefield, data, manifest_bytes)
return manifest_dec
def encodeManifest(manifest_dict:dict):
"""Encodes the manifest field.
Returns: The base64 encoded serialized manifest
Args:
manifest_dict (dict): dictionary having the following keys :
* sequence : the sequence field of the manifest
* master_public_key: The master public key of the node
* signing_public_key: the signing public key of the node
* domain (optional): the domain
* signature: the signature of the serialized manifest data using signing private key
* master_signature: the signature of the serialized manifest data using the master private key
"""
'''
Manifest Serialization:
ManifestData are calculated as below:
ManifestData = a bytearray properly serialized with ripple library.
A quick and dirty way to encode and retrieve data from manifest field:
Sequence (type:uint32, fieldID:4) : 0x24 | uint32_t seq
Master public key (type:blob, fieldID:1) : 0x71 | uint8_t len | bytearray[len]
Signing Public key (type:blob, fieldID:3) : 0x73 | uint8_t len | bytearray[len]
Signature (type:blob, fieldID:6) : 0x76 | uint8_t len | bytearray[len]
MasterSignature (type:blob, fieldID:18 (extra byte)) : 0x7012 | uint8_t len | bytearray[len]
Domain (type:blob, fieldID:7) : 0x77 | unit8_t(len) | bytearray[len]
PubKeyBytes= base58ToBytes(hexToBase58(pub_key))
URLs:
*https://github.com/ripple/rippled/blob/1.5.0/src/ripple/app/misc/Manifest.h
* https://xrpl.org/serialization.html#field-codes
* https://github.com/ripple/ripple-binary-codec/blob/master/src/enums/definitions.json
* https://github.com/ripple/rippled/blob/72e6005f562a8f0818bc94803d222ac9345e1e40/src/ripple/protocol/impl/SField.cpp#L72-L266
* https://github.com/seelabs/rippled/blob/cecc0ad75849a1d50cc573188ad301ca65519a5b/src/ripple/protocol/impl/Serializer.cpp#L484-L509
* https://github.com/seelabs/rippled/blob/cecc0ad75849a1d50cc573188ad301ca65519a5b/src/ripple/protocol/impl/Serializer.cpp#L117-L148
'''
manifestPrefix=b'MAN\0'
serializedManifest=''
seqbytes=int.to_bytes(0x24,1,'big') + int.to_bytes(int(manifest_dict['sequence']),4,'big')
if len(manifest_dict['master_public_key'])>=64 :
# it's in hex bytes
pkbytes=base58ToBytes(hexToBase58(manifest_dict['master_public_key']))
elif len(manifest_dict['master_public_key'])!=33 :
pkbytes=base58ToBytes(manifest_dict['master_public_key'])
else:
# it's in bytes (33 byte length)
pkbytes=manifest_dict['master_public_key']
mpkbytes=int.to_bytes(0x71,1,'big')+ int.to_bytes(len(pkbytes),1,'big')+pkbytes
if len(manifest_dict['signing_public_key'])>=64 :
# it's in hex bytes
spkbytes=base58ToBytes(hexToBase58(manifest_dict['signing_public_key']))
elif len(manifest_dict['signing_public_key'])!=33 :
spkbytes=base58ToBytes(manifest_dict['signing_public_key'])
else:
# it's in bytes (33 byte length)
spkbytes=manifest_dict['signing_public_key']
signpkbytes=int.to_bytes(0x73,1,'big')+ int.to_bytes(len(spkbytes),1,'big')+spkbytes
domainbytes=b''
if 'domain' in manifest_dict.keys():
dbytes=manifest_dict['domain']#.encode('ascii')
domainbytes=int.to_bytes(0x77,1,'big')+ int.to_bytes(len(dbytes),1,'big')+dbytes
msignaturebytes=int.to_bytes(0x7012,2,'big')+ int.to_bytes(len(manifest_dict['master_signature']),1,'big')+binascii.a2b_hex(manifest_dict['master_signature'])
signaturebytes=int.to_bytes(0x76,1,'big')+ int.to_bytes(len(manifest_dict['signature']),1,'big')+binascii.a2b_hex(manifest_dict['signature'])
# order: Seq, MPUBKEY,SPUBKEY,SIGNATURE,DOMAIN,MASTER_SIGNATURE
serializedManifest=seqbytes+mpkbytes +signpkbytes+signaturebytes+domainbytes+msignaturebytes#
return base64.b64encode(serializedManifest)
def serializeManifestData(manifest_dict:dict):
"""serializes manifest data only
sequence, master public key, signing public key and domain
Args:
manifest_dict (dict): [description]
"""
serializedManifest=''
seqbytes=int.to_bytes(0x24,1,'big') + int.to_bytes(int(manifest_dict['sequence']),4,'big')
if len(manifest_dict['master_public_key'])>=64 :
# it's in hex bytes
pkbytes=base58ToBytes(hexToBase58(manifest_dict['master_public_key']))
elif len(manifest_dict['master_public_key'])!=33 :
pkbytes=base58ToBytes(manifest_dict['master_public_key'])
else:
# it's in bytes (33 byte length)
pkbytes=manifest_dict['master_public_key']
mpkbytes=int.to_bytes(0x71,1,'big')+ int.to_bytes(len(pkbytes),1,'big')+pkbytes
if len(manifest_dict['signing_public_key'])>=64 :
# it's in hex bytes
spkbytes=base58ToBytes(hexToBase58(manifest_dict['signing_public_key']))
elif len(manifest_dict['signing_public_key'])!=33 :
spkbytes=base58ToBytes(manifest_dict['signing_public_key'])
else:
# it's in bytes (33 byte length)
spkbytes=manifest_dict['signing_public_key']
signpkbytes=int.to_bytes(0x73,1,'big')+ int.to_bytes(len(spkbytes),1,'big')+spkbytes
domainbytes=b''
if 'domain' in manifest_dict.keys():
# print(manifest_dict['domain'])
dbytes=manifest_dict['domain']#.encode('ascii') #binascii.a2b_hex()
domainbytes=int.to_bytes(0x77,1,'big')+ int.to_bytes(len(dbytes),1,'big')+dbytes
serializedManifest=seqbytes+mpkbytes+signpkbytes+domainbytes
# print(len(serializedManifest))
return serializedManifest
def verifyManifest(manifest_blob):
"""Verifies the manifest blob using the public keys and the signatures
Args:
manifest_blob ([type]): the blob of the manifest
Returns:
True : when validated both signatures
False: when not validated with either signature
"""
manf_obj=decodeManifest(manifest_blob)
serdata=serializeManifestData(manf_obj)
mpubkeybytes= base58ToBytes(manf_obj['master_public_key'])
# print(mpubkeybytes, mpubkeybytes[:1], len(mpubkeybytes))
if mpubkeybytes[:1]==b'\xed' :
# it's ED25519 key
mpubkey=Ed25519PublicKey.from_public_bytes(mpubkeybytes[1:])
try:
mpubkey.verify(signature=binascii.unhexlify(manf_obj['master_signature']),data='MAN\0'.encode('ascii')+serdata)
except InvalidSignature:
print("Unabled to verify!")
return False
else:
# print ("IT'S a ECDSA key")
pubkey_point = _CURVE.decode_point(mpubkeybytes)
mpubkey=ECPublicKey(pubkey_point)
res=_SIGNER.verify('MAN\0'.encode('ascii')+serdata,binascii.unhexlify(manf_obj['master_signature']),mpubkey) #sha512_first_half('MAN\0'.encode('ascii')+serdata)
if not res:
print("Failed to verify",res)
return False
spubkeybytes= base58ToBytes(manf_obj['signing_public_key'])
if spubkeybytes[:1]==b'\xed' :
# it's ED25519 key
spubkey=Ed25519PublicKey.from_public_bytes(spubkeybytes[1:])
try:
spubkey.verify(signature=binascii.unhexlify(manf_obj['signature']),data='MAN\0'.encode('ascii')+serdata)
except InvalidSignature:
print("Unabled to verify!")
return False
else:
# print ("IT'S a ECDSA key")
pubkey_point = _CURVE.decode_point(spubkeybytes)
spubkey=ECPublicKey(pubkey_point)
res=_SIGNER.verify(sha512_first_half('MAN\0'.encode('ascii')+serdata),binascii.unhexlify(manf_obj['signature']),spubkey)
if not res:
print("Failed to verify",res)
return False
return True
def signManifest(manifest_dict:dict, master_private_key, signing_private_key):
"""[summary]
returns the manifest dictionary with updated master_signature and signature fields
Args:
manifest_dict (dict): [description]
master_private_key ([type]): [description]
signing_private_key ([type]): [description]
"""
serdata='MAN\0'.encode('ascii')+serializeManifestData(manifest_dict)
mpubkeybytes= base58ToBytes(manifest_dict['master_public_key'])
if mpubkeybytes[:1]==b'\xed' :
# it's ED25519 key
if type(master_private_key, ec.EllipticCurvePrivateKey ):
print("master private key type is not the same as master public key")
if type(master_private_key, Ed25519PrivateKey):
manifest_dict['master_signature']=binascii.hexlify(master_private_key.sign(data=serdata))
mpubkey=Ed25519PublicKey.from_public_bytes(mpubkeybytes)
mpubkey.verify(signature=binascii.unhexlify(manifest_dict['master_signature']),data=serdata)
else:
if type(master_private_key, ec.EllipticCurvePrivateKey ):
# print ("IT'S a ECDSA key")
manifest_dict['master_signature']=binascii.hexlify(_SIGNER.sign_rfc6979(serdata,master_private_key,sha256,canonical=True))
if type(master_private_key, Ed25519PrivateKey ):
print("master private key type is not the same as master public key")
pubkey_point = _CURVE.decode_point(mpubkeybytes)
mpubkey=ECPublicKey(pubkey_point)
res=_SIGNER.verify(sha512_first_half(serdata),manifest_dict['master_signature'],mpubkey)
if not res:
print("Failed to verify")
spubkeybytes= base58ToBytes(manifest_dict['signing_public_key'])
if spubkeybytes[:1]==b'\xed' :
# it's ED25519 key
if type(signing_private_key, ec.EllipticCurvePrivateKey ):
print("master private key type is not the same as master public key")
if type(signing_private_key, Ed25519PrivateKey):
manifest_dict['signature']=binascii.hexlify(signing_private_key.sign(data=serdata))
spubkey=Ed25519PublicKey.from_public_bytes(spubkeybytes)
spubkey.verify(signature=binascii.unhexlify(manifest_dict['signature']),data=serdata)
else:
if type(signing_private_key, ec.EllipticCurvePrivateKey ):
manifest_dict['signature']=binascii.hexlify(_SIGNER.sign_rfc6979(serdata,signing_private_key,sha256,canonical=True))
# print ("IT'S a ECDSA key")
if type(signing_private_key, Ed25519PrivateKey):
print("signing private key type is not the same as signing public key")
pubkey_point = _CURVE.decode_point(spubkeybytes)
spubkey=ECPublicKey(pubkey_point)
res=_SIGNER.verify(sha512_first_half(serdata),manifest_dict['signature'],spubkey)
if not res:
print("Failed to verify")
return manifest_dict
def decodeValidatorToken(validator_token: str):
"""Decodes validator token and returns a JSON object with manifest, public keys and validation_secret_key
Arguments:
validator_token {str} -- [description]
"""
vtokenObj = json.loads(base64.b64decode(validator_token))
# print (vtokenObj)
vkeys = vtokenObj
manif = decodeManifest(vtokenObj['manifest'])
vkeys['public_key'] = manif['master_public_key']
vkeys['signing_public_key']=manif['signing_public_key']
return vkeys
def createValidatorsList(validators_names_list: list, keys_path: str):
"""Gets a list of validators names and returns a list of validators public keys and manifests.
Arguments:
validators_names_list {list} -- [description]
keys_path {str} -- [description]
"""
vallist = []
for valname in validators_names_list:
mval = {}
valkeys_fname = keys_path+'/'+valname+'/validator-keys.json'
if os.path.exists(valkeys_fname):
with open(valkeys_fname, 'r') as f:
mvalkeys = json.load(f)
mval['validation_public_key'] = base58ToHex(
mvalkeys['public_key']).upper().decode('ascii')
mval['manifest'] = base64.b64encode(
binascii.unhexlify(mvalkeys['manifest'])).decode('ascii')
vallist.append(mval)
else:
continue
return vallist
def convertToRippleTime(tstamp=time.time()):
"""Converts given timestamp, seconds since Epoch(1/1/1970), to Ripple Timestamp, seconds since Ripple Epoch (1/1/2000)
Args:
tstamp (timestamp, optional): The timestamp (seconds from Epoch). Defaults to time.time().
Returns:
timestamp: Ripple Timestamp, seconds since Ripple Epoch (1/1/2000)
"""
ripple_epoch = time.mktime(time.strptime("20000101000000", "%Y%m%d%H%M%S"))
return tstamp - ripple_epoch
def convertToUnixTime(rtstamp):
"""Converts given timestamp, seconds since Epoch(1/1/1970), to Ripple Timestamp, seconds since Ripple Epoch (1/1/2000)
Args:
tstamp (timestamp, optional): The timestamp (seconds from Epoch). Defaults to time.time().
Returns:
timestamp: Ripple Timestamp, seconds since Ripple Epoch (1/1/2000)
"""
ripple_epoch = time.mktime(time.strptime("20000101000000", "%Y%m%d%H%M%S"))
return rtstamp + ripple_epoch
def createUNL_from_blob(blob_dict,validator_gen_keys:dict):
"""
Creates a properly signed UNL with the blob_dict.
"""
munl = {}
munl['public_key'] = base58ToHex(validator_gen_keys['public_key'].decode('ascii')).upper().decode('ascii')
munl['manifest'] = validator_gen_keys['manifest']
mblob_bytes = json.dumps(blob_dict)
mblob_bin = base64.b64encode(mblob_bytes.encode('ascii'))
munl['blob']=mblob_bin.decode('ascii')
signing_public_key = decodeManifest(validator_gen_keys['manifest'])[
'signing_public_key']
is_ed25519=(signing_public_key[0]==0xed)
if is_ed25519:
# print ("IT'S ED25519 key")
mSignK = Ed25519PrivateKey.from_private_bytes( binascii.unhexlify(validator_gen_keys['validation_secret_key']))
mSignPubK=Ed25519PublicKey.from_public_bytes(base58ToBytes(signing_public_key)[1:])
munl['signature'] = mSignK.sign(mblob_bytes.encode('ascii')).hex().upper()
else:
# print ("IT'S a ECDSA key")
### Important info:
# line:987 https://github.com/ripple/rippled/blob/develop/src/ripple/app/misc/impl/ValidatorList.cpp
# The hashing algorithm for the fullhash is sha512half --> SHA512_256()<--- WRONG!!! it's first half of SHA512
#############
# use ECPY
mSignK = ECPrivateKey(int(validator_gen_keys['validation_secret_key'],16),_CURVE)
pubkey_point=_CURVE.decode_point(base58ToBytes(signing_public_key))
mSignPubK=ECPublicKey(pubkey_point)
munl['signature'] = _SIGNER.sign_rfc6979(sha512_first_half(mblob_bytes.encode('ascii')),mSignK,sha256,canonical=True).hex().upper()
# print( "\nmblob bytes: ",mblob_bytes, type(mblob_bytes.encode('ascii')))
# print("\nvalidator gen keys:",validator_gen_keys)
# print("\n manifest: ", decodeManifest(validator_gen_keys['manifest']))
#print("unl signature: ", munl['signature'], len(munl['signature']))
# munl['manifest'] = validator_gen_keys['manifest']
munl['version'] = 1
# munl['public_key'] = base58ToHex(validator_gen_keys['public_key'].decode('ascii')).upper().decode('ascii')
# print("\nDEBUG: createUNL(): ", validator_gen_keys, munl)
return munl
def createUNL_from_bloblist(bloblist: list, validator_gen_keys: dict, version: int,expiration_date:float=None):
"""
Creates a properly signed UNL using the bloblist for "validators" key in blob.
It sets the version/sequence of the UNL and the expiration date.
"""
munl = {}
mblob_data = {}
munl['public_key'] = base58ToHex(validator_gen_keys['public_key'].decode('ascii')).upper().decode('ascii')
munl['manifest'] = validator_gen_keys['manifest']
mblob_data['sequence'] = version
if expiration_date==None:
# We set the expiration date to be 1 year after.
td = time.mktime(time.strptime("19710101000000", "%Y%m%d%H%M%S"))
mblob_data['expiration'] = int(convertToRippleTime(time.time()) + td)
else:
mblob_data['expiration'] = int(convertToRippleTime(expiration_date))
mblob_data['validators'] = bloblist
# print(mblob_data, type(mblob_data))
mblob_bytes=json.dumps(mblob_data)
mblob_bin = base64.b64encode(mblob_bytes.encode('ascii'))
munl['blob'] = mblob_bin.decode('ascii')
signing_public_key = decodeManifest(validator_gen_keys['manifest'])['signing_public_key']
is_ed25519=(signing_public_key[0]==0xed)
if is_ed25519:
# print ("IT'S ED25519 key")
mSignK = Ed25519PrivateKey.from_private_bytes( binascii.unhexlify(validator_gen_keys['validation_secret_key']))
mSignPubK=Ed25519PublicKey.from_public_bytes(base58ToBytes(signing_public_key)[1:])
munl['signature'] = mSignK.sign(mblob_bytes.encode('ascii')).hex().upper()
else:
# print ("IT'S a ECDSA key")
### Important info:
# line:987 https://github.com/ripple/rippled/blob/develop/src/ripple/app/misc/impl/ValidatorList.cpp
# The hashing algorithm for the fullhash is sha512half --> SHA512_256()<--WRONG, It's first half of SHA512
# using ECPY
mSignK = ECPrivateKey(int(validator_gen_keys['validation_secret_key'],16),_CURVE)
pubkey_point=_CURVE.decode_point(base58ToBytes(signing_public_key))
mSignPubK=ECPublicKey(pubkey_point)
munl['signature'] = _SIGNER.sign_rfc6979(sha512_first_half(mblob_bytes.encode('ascii')),mSignK,sha256,canonical=True).hex().upper()
# print( "\nmblob bytes: ",mblob_bytes, type(mblob_bytes.encode('ascii')))
# print("\nvalidator gen keys:",validator_gen_keys)
# print("\n manifest: ", decodeManifest(validator_gen_keys['manifest']))
#print("unl signature: ", munl['signature'], len(munl['signature']))
munl['version'] = 1
# print("\nDEBUG: createUNL(): ", validator_gen_keys, munl)
return munl
def createUNL(validators_names_list: list, validator_gen_keys: dict, version: int, keys_path: str,expiration_date:float=None):
"""Creates a properly signed UNL that contains only the validators in the validators_names_list
Arguments:
validators_names_list {list} -- [description]
master_keys {dict} -- [description]
ephemeral_keys {dict} -- [description]
version {int} -- [description]
keys_path {str} -- the root path for the validators keys
expiration_date {float} -- expiration date in seconds since unix epoch
"""
munl = {}
mblob_data = {}
# keys sequence on vl.ripple.com
# public_key, manifest, blob, signature, version
munl['public_key'] = base58ToHex(validator_gen_keys['public_key'].decode('ascii')).upper().decode('ascii')
munl['manifest'] = validator_gen_keys['manifest']
mblob_data['sequence'] = version
if expiration_date==None:
# We set the expiration date to be 1 year after.
td = time.mktime(time.strptime("19710101000000", "%Y%m%d%H%M%S"))
mblob_data['expiration'] = int(convertToRippleTime(time.time()) + td)
else:
mblob_data['expiration'] = int(convertToRippleTime(expiration_date))
mblob_data['validators'] = createValidatorsList(
validators_names_list, keys_path)
mblob_bytes=json.dumps(mblob_data)
mblob_bin = base64.b64encode(mblob_bytes.encode('ascii'))
munl['blob'] = mblob_bin.decode('ascii')
signing_public_key = decodeManifest(validator_gen_keys['manifest'])[
'signing_public_key']
is_ed25519=(signing_public_key[0]==0xed)
if is_ed25519:
print ("IT'S ED25519 key")
mSignK = Ed25519PrivateKey.from_private_bytes( binascii.unhexlify(validator_gen_keys['validation_secret_key']))
mSignPubK=Ed25519PublicKey.from_public_bytes(base58ToBytes(signing_public_key)[1:])
munl['signature'] = mSignK.sign(mblob_bytes.encode('ascii')).hex().upper()
else:
# print ("IT'S a ECDSA key")
### Important info:
# line:987 https://github.com/ripple/rippled/blob/develop/src/ripple/app/misc/impl/ValidatorList.cpp
# The hashing algorithm for the fullhash is sha512half --> SHA512_256() <-- WRONG, it's first half of SHA512
#############
# using ECPY
mSignK = ECPrivateKey(int(validator_gen_keys['validation_secret_key'],16),_CURVE)
pubkey_point=_CURVE.decode_point(base58ToBytes(signing_public_key))
mSignPubK=ECPublicKey(pubkey_point)
munl['signature'] = _SIGNER.sign_rfc6979(sha512_first_half(mblob_bytes.encode('ascii')),mSignK,sha256,canonical=True).hex().upper()
# print( "\nmblob bytes: ",mblob_bytes, type(mblob_bytes.encode('ascii')))
# print("\nvalidator gen keys:",validator_gen_keys)
# print("\n manifest: ", decodeManifest(validator_gen_keys['manifest']))
#print("unl signature: ", munl['signature'], len(munl['signature']))
munl['version'] = 1
# print("\nDEBUG: createUNL(): ", validator_gen_keys, munl)
return munl
def verifyUNL(unl):
"""
Verifies the UNL against the signing public key and the signatures for both blob and manifest.
"""
lman=decodeManifest(unl['manifest'])
mres=False
mres=verifyManifest(unl['manifest'])
mres&=verify(base58ToBytes(lman['signing_public_key']), base64.b64decode(unl['blob']), binascii.a2b_hex(unl['signature']))
list_blob = json.loads(base64.b64decode(unl['blob']))
for v in list_blob['validators']:
vman=decodeManifest(v['manifest'])
# print("Serialized: ",utils.encodeManifest(vman))
# print("Original: ", v['manifest'])#base64.b64decode(v['manifest']))
vv=verifyManifest(v['manifest'])
mres&=vv
# print (vman['master_public_key'], vv)
return mres
def verify(public_key, binary, signature):
"""[summary]
Args:
public_key ([type]): [description]
binary ([type]): [description]
signature ([type]): [description]
"""
# print(binascii.hexlify(public_key))
is_ed25519=(public_key[0]==0xed)
if is_ed25519:
# print ("It's ED25519 key")
pk=Ed25519PublicKey.from_public_bytes(public_key[1:])
try:
pk.verify(signature,data=binary)
except InvalidSignature :
print("Cannot be validated")
return False
return True
else:
pubkey_point=_CURVE.decode_point(public_key)#base58ToBytes(public_key))
# See https://xrpl.org/cryptographic-keys.html#key-derivation
mpubkey=ECPublicKey(pubkey_point)
a=_SIGNER.verify(sha512_first_half(binary),signature,mpubkey)
return a