-
Notifications
You must be signed in to change notification settings - Fork 56
/
feature-extractor
executable file
·159 lines (124 loc) · 5.37 KB
/
feature-extractor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from torch.autograd import Variable
import torch.utils.data as data
from torchvision.models import resnet50
from torchvision import transforms
# This script uses the PyTorch's pre-trained ResNet-50 CNN to extract
# res4f_relu convolutional features of size 1024x14x14
# avgpool features of size 2048D
# We reproduced ImageNet val set Top1/Top5 accuracy of 76.1/92.8 %
# as reported in the following web page before extracting the features:
# http://pytorch.org/docs/master/torchvision/models.html
#
# We save the final files as 16-bit floating point tensors to reduce
# the size by 2x. We confirmed that this does not affect the above accuracy.
#
# Organization of the image folder:
# In order to extract features from an arbitrary set of images,
# you need to create a folder with a file called `index.txt` in it that
# lists the filenames of the raw images in an ordered way.
# -f /path/to/images/train --> train folder contains 29K images
# and an index.txt with 29K lines.
#
class ImageFolderDataset(data.Dataset):
"""A variant of torchvision.datasets.ImageFolder which drops support for
target loading, i.e. this only loads images not attached to any other
label.
Arguments:
root (str): The root folder which contains a folder per each split.
split (str): A subfolder that should exist under ``root`` containing
images for a specific split.
resize (int, optional): An optional integer to be given to
``torchvision.transforms.Resize``. Default: ``None``.
crop (int, optional): An optional integer to be given to
``torchvision.transforms.CenterCrop``. Default: ``None``.
"""
def __init__(self, root, split, resize=None, crop=None):
self.split = split
self.root = Path(root).expanduser().resolve() / self.split
# Image list in dataset order
self.index = self.root / 'index.txt'
_transforms = []
if resize is not None:
_transforms.append(transforms.Resize(resize))
if crop is not None:
_transforms.append(transforms.CenterCrop(crop))
_transforms.append(transforms.ToTensor())
_transforms.append(
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
self.transform = transforms.Compose(_transforms)
if not self.index.exists():
raise(RuntimeError(
"index.txt does not exist in {}".format(self.root)))
self.image_files = []
with self.index.open() as f:
for fname in f:
fname = self.root / fname.strip()
assert fname.exists(), "{} does not exist.".format(fname)
self.image_files.append(str(fname))
def read_image(self, fname):
with open(fname, 'rb') as f:
img = Image.open(f).convert('RGB')
return self.transform(img)
def __getitem__(self, idx):
return self.read_image(self.image_files[idx])
def __len__(self):
return len(self.image_files)
def resnet_forward(cnn, x):
x = cnn.conv1(x)
x = cnn.bn1(x)
x = cnn.relu(x)
x = cnn.maxpool(x)
x = cnn.layer1(x)
x = cnn.layer2(x)
res4f_relu = cnn.layer3(x)
res5e_relu = cnn.layer4(res4f_relu)
avgp = cnn.avgpool(res5e_relu)
avgp = avgp.view(avgp.size(0), -1)
return res4f_relu, avgp
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='extract-cnn-features')
parser.add_argument('-f', '--folder', type=str, required=True,
help='Folder to image files i.e. /images/train')
parser.add_argument('-b', '--batch-size', type=int, default=256,
help='Batch size for forward pass.')
parser.add_argument('-o', '--output', type=str, default='resnet50',
help='Output file prefix. Ex: resnet50')
# Parse arguments
args = parser.parse_args()
root = Path(args.folder)
split = root.name
# Create dataset
dataset = ImageFolderDataset(root.parent, split, resize=256, crop=224)
print('Root folder: {} (split: {}) ({} images)'.format(
root, split, len(dataset)))
loader = data.DataLoader(dataset, batch_size=args.batch_size)
print('Creating CNN instance.')
cnn = resnet50(pretrained=True)
# Remove final classifier layer
del cnn.fc
# Move to GPU and switch to evaluation mode
cnn.cuda()
cnn.train(False)
# Create placeholders
conv_feats = np.zeros((len(dataset), 1024, 14, 14), dtype='float32')
pool_feats = np.zeros((len(dataset), 2048), dtype='float32')
n_batches = int(np.ceil(len(dataset) / args.batch_size))
bs = args.batch_size
for bidx, batch in enumerate(loader):
x = Variable(batch, volatile=True).cuda()
res4f, avgpool = resnet_forward(cnn, x)
pool_feats[bidx * bs: (bidx + 1) * bs] = avgpool.data.cpu()
conv_feats[bidx * bs: (bidx + 1) * bs] = res4f.data.cpu()
print('{:3}/{:3} batches completed.'.format(
bidx + 1, n_batches), end='\r')
# Save the files
output = "{}-{}".format(split, args.output)
np.save(output + '-avgpool', pool_feats.astype('float16'))
np.save(output + '-res4frelu', conv_feats.astype('float16'))