-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathchordnet_ismir_naive.py
307 lines (266 loc) · 13.2 KB
/
chordnet_ismir_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch.nn as nn
import torch.nn.functional as F
from mir.nn.train import NetworkBehavior,NetworkInterface
from mir.nn.data_storage import FramedRAMDataStorage,FramedH5DataStorage
from mir.nn.data_decorator import CQTPitchShifter,AbstractPitchShifter,NoPitchShifter
from mir.nn.data_provider import FramedDataProvider
import torch
import numpy as np
from complex_chord import Chord,ChordTypeLimit,shift_complex_chord_array_list,complex_chord_chop,enum_to_dict,\
TriadTypes,SeventhTypes,NinthTypes,EleventhTypes,ThirteenthTypes,complex_chord_chop_list
from train_eval_test_split import get_train_set_ids,get_test_set_ids,get_val_set_ids
SHIFT_LOW=-5
SHIFT_HIGH=6
SHIFT_STEP=3
SPEC_DIM=252
LSTM_TRAIN_LENGTH=1000
chord_limit=ChordTypeLimit(
triad_limit=6,
seventh_limit=3,
ninth_limit=3,
eleventh_limit=2,
thirteenth_limit=2
)
class ReweightedLoss(nn.Module):
def __init__(self,counter,power=1.0,max_clip=10.0,gpu=False,triad_only=False):
super(ReweightedLoss, self).__init__()
self.weight=[None]*6
for i in range(6):
if(i==0 or i==1):
self.weight[i]=torch.tensor([counter[i][(j+11)//12] for j in range(len(counter[i])*12-11)],dtype=torch.float32)
else:
self.weight[i]=torch.tensor(counter[i],dtype=torch.float32)
self.weight[i]=torch.pow(self.weight[i].max()/self.weight[i],power)
self.weight[i][self.weight[i]>max_clip]=max_clip
if(gpu==True):
self.weight[i]=self.weight[i].cuda()
self.triad_only=triad_only
def forward(self, output, tag):
def conditional_classifier_loss(a,b,weight=None):
if((b<0).all()):
return torch.tensor(0,device=b.device)
loss=F.cross_entropy(a[b>=0],b[b>=0],weight=weight[:a.shape[1]])
#loss_term=self.loss_calc(a[b>=0],b[b>=0])
return loss
if(self.triad_only):
result=conditional_classifier_loss(output[0],tag[:,0],weight=self.weight[0])
else:
result=conditional_classifier_loss(output[0],tag[:,0],weight=self.weight[0])+\
conditional_classifier_loss(output[1],tag[:,1]+1,weight=self.weight[1])+\
conditional_classifier_loss(output[2],tag[:,2],weight=self.weight[2])+\
conditional_classifier_loss(output[3],tag[:,3],weight=self.weight[3])+\
conditional_classifier_loss(output[4],tag[:,4],weight=self.weight[4])+\
conditional_classifier_loss(output[5],tag[:,5],weight=self.weight[5])
return result
class CNNFeatureExtractor(nn.Module):
def norm_layer(self,channels):
return nn.InstanceNorm2d(channels)
def __init__(self):
super(CNNFeatureExtractor, self).__init__()
self.cdim1=16
self.cdim2=32
self.cdim3=64
self.cdim4=80
self.conv1a=nn.Conv2d(1,self.cdim1,(3,3),padding=(1,1))
self.norm1a=self.norm_layer(self.cdim1)
self.conv1b=nn.Conv2d(self.cdim1,self.cdim1,(3,3),padding=(1,1))
self.norm1b=self.norm_layer(self.cdim1)
self.conv1c=nn.Conv2d(self.cdim1,self.cdim1,(3,3),padding=(1,1))
self.norm1c=self.norm_layer(self.cdim1)
self.pool1=nn.MaxPool2d((1,3))
self.conv2a=nn.Conv2d(self.cdim1,self.cdim2,(3,3),padding=(1,1))
self.norm2a=self.norm_layer(self.cdim2)
self.conv2b=nn.Conv2d(self.cdim2,self.cdim2,(3,3),padding=(1,1))
self.norm2b=self.norm_layer(self.cdim2)
self.conv2c=nn.Conv2d(self.cdim2,self.cdim2,(3,3),padding=(1,1))
self.norm2c=self.norm_layer(self.cdim2)
self.pool2=nn.MaxPool2d((1,3))
self.conv3a=nn.Conv2d(self.cdim2,self.cdim3,(3,3),padding=(1,1))
self.norm3a=self.norm_layer(self.cdim3)
self.conv3b=nn.Conv2d(self.cdim3,self.cdim3,(3,3),padding=(1,1))
self.norm3b=self.norm_layer(self.cdim3)
self.pool3=nn.MaxPool2d((1,4))
self.conv4a=nn.Conv2d(self.cdim3,self.cdim4,(3,3),padding=(1,0))
self.norm4a=self.norm_layer(self.cdim4)
self.conv4b=nn.Conv2d(self.cdim4,self.cdim4,(3,3),padding=(1,0))
self.norm4b=self.norm_layer(self.cdim4)
self.output_size=3*self.cdim4
def forward(self, x):
assert(len(x.shape)==3)
batch_size=x.shape[0]
seq_length=x.shape[1]
x=x.view((batch_size,1,seq_length,SPEC_DIM))
x=F.selu(self.norm1a(self.conv1a(x)))
x=F.selu(self.norm1b(self.conv1b(x)))
x=F.selu(self.norm1c(self.conv1c(x)))
x=self.pool1(x)
x=F.selu(self.norm2a(self.conv2a(x)))
x=F.selu(self.norm2b(self.conv2b(x)))
x=F.selu(self.norm2c(self.conv2c(x)))
x=self.pool2(x)
x=F.selu(self.norm3a(self.conv3a(x)))
x=F.selu(self.norm3b(self.conv3b(x)))
x=self.pool3(x)
x=F.selu(self.norm4a(self.conv4a(x)))
x=F.selu(self.norm4b(self.conv4b(x)))
x=x.transpose(1,2).contiguous().view((batch_size,seq_length,self.output_size))
return x
class ChordNet(NetworkBehavior):
def __init__(self,cross_subpart_counter,triad_only=False):
super(ChordNet, self).__init__()
self.triad_only=triad_only
self.audio_feature_block=CNNFeatureExtractor()
self.condition_linear=nn.Linear(self.audio_feature_block.output_size+12+chord_limit.triad_limit+12,128)
self.hidden_dim1=192
self.lstm1=nn.LSTM(
input_size=self.audio_feature_block.output_size,
hidden_size=self.hidden_dim1//2,
num_layers=1,
bidirectional=True,
batch_first=True
)
self.output_dim1=chord_limit.triad_limit*12+2+12
self.output_dim2=chord_limit.seventh_limit+chord_limit.ninth_limit+chord_limit.eleventh_limit+chord_limit.thirteenth_limit+4
self.final_fc1=nn.Linear(self.hidden_dim1,self.output_dim1+self.output_dim2)
#self.loss_calc=FocalLoss(gamma=2.0)
if(cross_subpart_counter is not None):
self.loss_reweight=ReweightedLoss(cross_subpart_counter,power=1.0,max_clip=1.0,gpu=self.use_gpu,triad_only=triad_only)
def init_hidden(self,batch_size,hidden_dim):
c_0=torch.zeros(2,batch_size,hidden_dim//2)
h_0=torch.zeros(2,batch_size,hidden_dim//2)
if(self.use_gpu):
c_0=c_0.cuda()
h_0=h_0.cuda()
return (c_0,h_0)
def forward(self, x):
batch_size=x.shape[0]
seq_length=x.shape[1]
x=self.audio_feature_block(x)
x1=self.lstm1(x,self.init_hidden(batch_size,self.hidden_dim1))[0]
x1=self.final_fc1(x1).reshape((batch_size*seq_length,self.output_dim1+self.output_dim2))
bass_del=chord_limit.bass_slice_begin+12+1
seventh_del=bass_del+chord_limit.seventh_limit+1
ninth_del=seventh_del+chord_limit.ninth_limit+1
eleventh_del=ninth_del+chord_limit.eleventh_limit+1
thirteenth_del=eleventh_del+chord_limit.thirteenth_limit+1
return x1[:,:chord_limit.bass_slice_begin],\
x1[:,chord_limit.bass_slice_begin:bass_del],\
x1[:,bass_del:seventh_del],\
x1[:,seventh_del:ninth_del],\
x1[:,ninth_del:eleventh_del],\
x1[:,eleventh_del:thirteenth_del]
def loss(self, x, y):
output=self.feed(x)
tag=y.view((-1,6))
return self.loss_reweight(output,tag)
def inference(self, x):
seq_length=x.shape[0]
output=self.feed(x[:,SHIFT_HIGH*SHIFT_STEP:SHIFT_HIGH*SHIFT_STEP+SPEC_DIM].view((1,seq_length,SPEC_DIM)))
result_triad=F.softmax(output[0],dim=1).cpu().numpy()
result_bass=F.softmax(output[1],dim=1).cpu().numpy()
result_7=F.softmax(output[2],dim=1).cpu().numpy()
result_9=F.softmax(output[3],dim=1).cpu().numpy()
result_11=F.softmax(output[4],dim=1).cpu().numpy()
result_13=F.softmax(output[5],dim=1).cpu().numpy()
return result_triad,result_bass,result_7,result_9,result_11,result_13
class ChordNetCNN(NetworkBehavior):
def __init__(self,cross_subpart_counter):
super(ChordNetCNN, self).__init__()
self.audio_feature_block=CNNFeatureExtractor()
self.hidden_dim1=192
self.output_dim1=chord_limit.triad_limit*12+2+12
self.output_dim2=chord_limit.seventh_limit+chord_limit.ninth_limit+chord_limit.eleventh_limit+chord_limit.thirteenth_limit+4
self.final_fc1=nn.Linear(self.audio_feature_block.output_size,self.output_dim1+self.output_dim2)
#self.loss_calc=FocalLoss(gamma=2.0)
if(cross_subpart_counter is not None):
self.loss_reweight=ReweightedLoss(cross_subpart_counter,power=1.0,max_clip=1.0,gpu=self.use_gpu)
def init_hidden(self,batch_size,hidden_dim):
c_0=torch.zeros(2,batch_size,hidden_dim//2)
h_0=torch.zeros(2,batch_size,hidden_dim//2)
if(self.use_gpu):
c_0=c_0.cuda()
h_0=h_0.cuda()
return (c_0,h_0)
def forward(self, x):
batch_size=x.shape[0]
seq_length=x.shape[1]
x=self.audio_feature_block(x)
x1=self.final_fc1(x).reshape((batch_size*seq_length,self.output_dim1+self.output_dim2))
bass_del=chord_limit.bass_slice_begin+12+1
seventh_del=bass_del+chord_limit.seventh_limit+1
ninth_del=seventh_del+chord_limit.ninth_limit+1
eleventh_del=ninth_del+chord_limit.eleventh_limit+1
thirteenth_del=eleventh_del+chord_limit.thirteenth_limit+1
return x1[:,:chord_limit.bass_slice_begin],\
x1[:,chord_limit.bass_slice_begin:bass_del],\
x1[:,bass_del:seventh_del],\
x1[:,seventh_del:ninth_del],\
x1[:,ninth_del:eleventh_del],\
x1[:,eleventh_del:thirteenth_del]
def loss(self, x, y):
output=self.feed(x)
tag=y.view((-1,6))
return self.loss_reweight(output,tag)
def inference(self, x):
seq_length=x.shape[0]
output=self.feed(x[:,SHIFT_HIGH*SHIFT_STEP:SHIFT_HIGH*SHIFT_STEP+SPEC_DIM].view((1,seq_length,SPEC_DIM)))
result_triad=F.softmax(output[0],dim=1).cpu().numpy()
result_bass=F.softmax(output[1],dim=1).cpu().numpy()
result_7=F.softmax(output[2],dim=1).cpu().numpy()
result_9=F.softmax(output[3],dim=1).cpu().numpy()
result_11=F.softmax(output[4],dim=1).cpu().numpy()
result_13=F.softmax(output[5],dim=1).cpu().numpy()
return result_triad,result_bass,result_7,result_9,result_11,result_13
class FocalLoss(nn.Module):
def __init__(self,gamma=0.0):
super(FocalLoss, self).__init__()
self.gamma=gamma
def forward(self, input, target):
logpt=F.log_softmax(input,dim=1)
logpt=logpt.gather(1,target[:,None]).view((-1))
pt=torch.tensor(logpt.data.exp())
loss=-1*(1-pt)**self.gamma*logpt
return loss.mean()
class ComplexChordShifter(AbstractPitchShifter):
def pitch_shift(self,data,shift):
return shift_complex_chord_array_list(complex_chord_chop_list(data,chord_limit),shift)
if __name__ == '__main__':
TOTAL_SLICE_COUNT=5
import sys,pickle
slice_id=int(sys.argv[1])
if(slice_id>=5 or slice_id<-1):
raise Exception('Invalid input')
storage_x=FramedH5DataStorage('D:/jams_cqt')
storage_y=FramedH5DataStorage('D:/jams_xchord')
storage_x.load_meta()
song_count=storage_x.total_song_count
if(0<=slice_id and slice_id<=5):
print('Train on slice %d'%slice_id)
f=open('data/cross_subpart_weight%d.pkl'%slice_id,'rb')
cross_subpart_counter=pickle.load(f)
f.close()
train_indices=get_train_set_ids(slice_id)
val_indices=get_val_set_ids(slice_id)
else:
train_indices=np.arange(song_count)
val_indices=np.arange(0,1) # fake validation here
# todo: weight calculation for full dataset
f=open('data/cross_subpart_weight%d.pkl'%0,'rb')
cross_subpart_counter=pickle.load(f)
f.close()
train_provider=FramedDataProvider(train_sample_length=LSTM_TRAIN_LENGTH,shift_low=SHIFT_LOW,shift_high=SHIFT_HIGH,num_workers=1,average_samples_per_song=1)
train_provider.link(storage_x,CQTPitchShifter(SPEC_DIM,SHIFT_LOW,SHIFT_HIGH),subrange=train_indices)
train_provider.link(storage_y,ComplexChordShifter(),subrange=train_indices)
val_provider=FramedDataProvider(train_sample_length=-1,shift_low=0,shift_high=0,num_workers=1,average_samples_per_song=1,need_shuffle=False)
val_provider.link(storage_x,CQTPitchShifter(SPEC_DIM,SHIFT_LOW,SHIFT_HIGH),subrange=val_indices)
val_provider.link(storage_y,ComplexChordShifter(),subrange=val_indices)
trainer=NetworkInterface(ChordNet(cross_subpart_counter,triad_only=True),
'joint_chord_net_ismir_v1.0_triad_only_reweight(1.0,1.0)_s%d'%slice_id,load_checkpoint=True)
if(slice_id==-1):
trainer.train_supervised(train_provider,val_provider,batch_size=12,
learning_rates_dict={1e-3:35,1e-4:25,1e-5:15,1e-6:10},round_per_print=10,round_per_save=500,
round_per_val=-1,early_end_epochs=100,val_batch_size=1)
else:
trainer.train_supervised(train_provider,val_provider,batch_size=12,
learning_rates_dict={1e-3:60,1e-4:30,1e-5:30,1e-6:10},round_per_print=10,round_per_save=500,
round_per_val=-1,early_end_epochs=5,val_batch_size=1)