-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsimple_tcn.py
237 lines (206 loc) · 10.2 KB
/
simple_tcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch.nn as nn
import torch
import torch.nn.functional as F
from mir.nn.data_storage import FramedRAMDataStorage
from mir.nn.data_provider import DataProvider, default_collate, data_type_fix
from mir.nn.train import NetworkBehavior, NetworkInterface
from mir.nn.data_provider import FramedDataProvider, data_type_fix
from modules.vae import Reparameterizer
from crf import CRFDecoder
import numpy as np
from scipy.ndimage.filters import maximum_filter1d
N_MIDI_PITCH = 128
SHIFT_LOW = -12
SHIFT_HIGH = 12
CONTEXT_LENGTH = 512
class TCNBlock(nn.Module):
def __init__(self, in_channels, out_channels, dilation, dropout):
super().__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_channels, out_channels, (3, ), padding=(dilation, ), dilation=(dilation, )),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(out_channels, out_channels, (3, ), padding=(dilation, ), dilation=(dilation, )),
nn.BatchNorm1d(out_channels),
nn.ReLU(),
nn.Dropout(dropout),
)
self.in_channels = in_channels
self.out_channels = out_channels
if (self.in_channels != self.out_channels):
self.linear = nn.Conv1d(self.in_channels, self.out_channels, (1, ))
def forward(self, x):
if (self.in_channels != self.out_channels):
return self.layers(x) + self.linear(x)
return self.layers(x) + x
class TCN(nn.Module):
def __init__(self, in_channels, out_channels, n_layers, dropout):
super().__init__()
layers = []
dilation = 1
for i in range(n_layers):
layers.append(TCNBlock(in_channels if i == 0 else out_channels, out_channels, dilation, dropout))
dilation *= 2
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x.transpose(1, 2)).transpose(1, 2)
class TCNClassifier(NetworkBehavior):
def __init__(self, in_channels, hidden_dim, n_layers, n_classes, dropout):
super().__init__()
self.tcn = TCN(in_channels, hidden_dim, n_layers, dropout)
self.linear = nn.Linear(hidden_dim, n_classes)
self.confidence_linear = nn.Linear(hidden_dim, 1)
self.n_classes = n_classes
def forward(self, x):
h = self.tcn(x)
return self.linear(h), self.confidence_linear(h)
def log_prob(self, logits1, conf1, logits2, conf2):
log_alpha = torch.log_softmax(torch.cat([conf1, conf2], dim=-1), dim=-1)
log_prob = torch.logsumexp(
torch.stack([
log_alpha[:, :, None, 0] + F.log_softmax(logits1, dim=-1),
log_alpha[:, :, None, 1] + F.log_softmax(logits2, dim=-1)
], dim=-1), dim=-1
)
return log_prob
def loss(self, x1, x2, y, downbeat_bins):
pred1, conf1 = self(x1)
pred2, conf2 = self(x2)
log_prob = self.log_prob(pred1,
conf1,
pred2,
conf2)
y_hierarchy = y[:, :, 1].contiguous()
return F.nll_loss(log_prob.view(-1, log_prob.shape[-1]), y_hierarchy.view(-1), ignore_index=-1)
def inference_song(self, xs, return_log_prob=False):
logits, conf = self(xs)
log_alpha = torch.log_softmax(conf, dim=0)
log_prob = torch.logsumexp(
log_alpha + F.log_softmax(logits, dim=-1), dim=0
)
if (return_log_prob):
return log_prob.cpu().numpy(), conf.squeeze(-1).cpu().numpy()
else:
return torch.exp(log_prob).cpu().numpy(), conf.squeeze(-1).cpu().numpy()
def inference(self, x):
logits, conf = self(x[None])
return F.softmax(logits, dim=-1).squeeze(0).cpu().numpy(), conf.squeeze(0).cpu().numpy()
class HierarchicalDataProvider(DataProvider):
def __init__(self, file_name, subrange, shift_low, shift_high, context_length, samples_per_song):
super().__init__(True, default_collate)
self.num_workers = 0
self.length = np.load(file_name + '.length.npy')
self.start = np.concatenate((np.zeros(1, dtype=int), np.cumsum(self.length)), axis=0)
self.data = np.load(file_name + '.npy')
self.subrange = subrange
self.shift_low = shift_low
self.shift_high = shift_high
self.valid_song_count = len(subrange)
self.context_length = context_length
self.samples_per_song = samples_per_song
def init_worker(self, worker_id, is_training_set):
pass # np.random.seed(worker_id + 1)
def get_length(self):
return self.valid_song_count * self.samples_per_song * (self.shift_high - self.shift_low + 1)
def pitch_shift(self, raw_data, start, end, shift, arr, return_labels):
pad_left = max(-start, 0)
pad_right = max(end - len(raw_data), 0)
data_labels = np.pad(raw_data[start + pad_left:end - pad_right], ((pad_left, pad_right), (0, 0)))
data = data_labels[:, 2:]
labels = data_labels[:, :2].astype(np.int64)
labels[:, 1] = maximum_filter1d(labels[:, 1], size=5)
result = None
if (np.all(data == 0)):
result = np.zeros((data.shape[0], data.shape[1] * 3))
else:
for i in arr:
new_data = np.bitwise_and(data, 3 << (int(i) * 2))
if (np.any(new_data)):
onset = np.bitwise_and(new_data, 1 << (int(i) * 2)) != 0
roll = np.bitwise_and(new_data, 1 << (int(i) * 2 + 1)) != 0
if not (np.any(roll)): # drum roll
result_drum = onset
result_roll = np.zeros_like(roll)
result_onset = np.zeros_like(roll)
else: # augmentation for non-drum tracks
result_drum = np.zeros_like(roll)
def shift_roll(roll, shift):
if (shift > 0):
return np.pad(roll[:, :-shift], ((0, 0), (shift, 0)))
elif (shift < 0):
return np.pad(roll[:, -shift:], ((0, 0), (0, -shift)))
return roll
result_roll = shift_roll(roll, shift)
result_onset = shift_roll(onset, shift)
result = np.concatenate((result_onset, result_roll, result_drum), axis=-1)
break
if (return_labels):
downbeat_bins = np.where(data_labels[:, 0] == 2)[0]
# retain 32 downbeat bins, pad if necessary
desired_downbeat_count = 32
if (len(downbeat_bins) > desired_downbeat_count):
clip_start = np.random.randint(len(downbeat_bins) - desired_downbeat_count)
downbeat_bins = downbeat_bins[clip_start: clip_start + desired_downbeat_count]
elif (len(downbeat_bins) < desired_downbeat_count):
# todo: better padding
downbeat_bins = np.pad(downbeat_bins, ((0, desired_downbeat_count - len(downbeat_bins)),), mode='reflect')
return result.astype(np.float32), labels, downbeat_bins
else:
return result.astype(np.float32)
def get_sample(self, id):
shift = id % (self.shift_high - self.shift_low + 1) + self.shift_low
raw_id = id // (self.shift_high - self.shift_low + 1) % self.valid_song_count
shift2 = np.random.randint(self.shift_low, self.shift_high + 1)
song_id = self.subrange[raw_id]
data = self.data[self.start[song_id]:self.start[song_id] + self.length[song_id]]
id = np.random.randint(len(data) - self.context_length)
arr = np.arange(32)
np.random.shuffle(arr)
return (self.pitch_shift(data, id, id + self.context_length, shift, arr, False),
*self.pitch_shift(data, id, id + self.context_length, shift2, arr[::-1], True))
def get_providers(data_file, use_pitch_shift):
f = open('./data/%s.split.txt' % data_file, 'r')
tokens = [line.strip().split(',') for line in f.readlines() if line.strip() != '']
f.close()
train_indices = np.array([int(id) for id in tokens[0]])
val_indices = np.array([int(id) for id in tokens[1]])
print('%s: Using %d samples to train' % (data_file, len(train_indices)))
print('%s: Using %d samples to val' % (data_file, len(val_indices)))
train_provider = HierarchicalDataProvider('data/%s' % data_file, train_indices, SHIFT_LOW if use_pitch_shift else 0,
SHIFT_HIGH if use_pitch_shift else 0, CONTEXT_LENGTH, 5 if use_pitch_shift else 130)
val_provider = HierarchicalDataProvider('data/%s' % data_file, val_indices, 0, 0, CONTEXT_LENGTH, 5)
return train_provider, val_provider
class JointProvider(DataProvider):
def __init__(self, provider1, provider2):
super().__init__(True, default_collate)
self.num_workers = 0
self.provider1 = provider1
self.provider2 = provider2
self.length1 = self.provider1.get_length()
self.length2 = self.provider2.get_length()
def init_worker(self, worker_id, is_training_set):
self.provider1.init_worker(worker_id, is_training_set)
self.provider2.init_worker(worker_id, is_training_set)
def get_length(self):
return self.length1 + self.length2
def get_sample(self, id):
if (id >= self.length1):
return self.provider2.get_sample(id - self.length1)
else:
return self.provider1.get_sample(id)
if __name__ == '__main__':
np.random.seed(0)
torch.manual_seed(0)
model_name = 'simple_tcn_v2.2_fixed_shift'
use_pitch_shift = 'no_pitch_shift' not in model_name
train_provider, val_provider = get_providers('rwc_multitrack_hierarchy_v8_supervised_fix_onset', use_pitch_shift)
trainer = NetworkInterface(TCNClassifier(384, 256, 6, 5, 0.5),
model_name, load_checkpoint=True)
trainer.train_supervised(train_provider,
val_provider,
batch_size=16,
learning_rates_dict={1e-4: 100},
round_per_print=100,
round_per_val=500,
round_per_save=1000)