forked from victordibia/handtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_multi_threaded.py
127 lines (107 loc) · 4.77 KB
/
detect_multi_threaded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from utils import detector_utils as detector_utils
import cv2
import tensorflow as tf
import multiprocessing
from multiprocessing import Queue, Pool
import time
from utils.detector_utils import WebcamVideoStream
import datetime
import argparse
frame_processed = 0
score_thresh = 0.2
# Create a worker thread that loads graph and
# does detection on images in an input queue and puts it on an output queue
def worker(input_q, output_q, cap_params, frame_processed):
print(">> loading frozen model for worker")
detection_graph, sess = detector_utils.load_inference_graph()
sess = tf.Session(graph=detection_graph)
while True:
#print("> ===== in worker loop, frame ", frame_processed)
frame = input_q.get()
if (frame is not None):
# actual detection
boxes, scores = detector_utils.detect_objects(
frame, detection_graph, sess)
# draw bounding boxes
detector_utils.draw_box_on_image(
cap_params['num_hands_detect'], cap_params["score_thresh"], scores, boxes, cap_params['im_width'], cap_params['im_height'], frame)
output_q.put(frame)
frame_processed += 1
else:
output_q.put(frame)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-src', '--source', dest='video_source', type=int,
default=0, help='Device index of the camera.')
parser.add_argument('-nhands', '--num_hands', dest='num_hands', type=int,
default=2, help='Max number of hands to detect.')
parser.add_argument('-fps', '--fps', dest='fps', type=int,
default=1, help='Show FPS on detection/display visualization')
parser.add_argument('-wd', '--width', dest='width', type=int,
default=300, help='Width of the frames in the video stream.')
parser.add_argument('-ht', '--height', dest='height', type=int,
default=200, help='Height of the frames in the video stream.')
parser.add_argument('-ds', '--display', dest='display', type=int,
default=1, help='Display the detected images using OpenCV. This reduces FPS')
parser.add_argument('-num-w', '--num-workers', dest='num_workers', type=int,
default=4, help='Number of workers.')
parser.add_argument('-q-size', '--queue-size', dest='queue_size', type=int,
default=5, help='Size of the queue.')
args = parser.parse_args()
input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
video_capture = WebcamVideoStream(src=args.video_source,
width=args.width,
height=args.height).start()
cap_params = {}
frame_processed = 0
cap_params['im_width'], cap_params['im_height'] = video_capture.size()
cap_params['score_thresh'] = score_thresh
# max number of hands we want to detect/track
cap_params['num_hands_detect'] = args.num_hands
print(cap_params, args)
# spin up workers to paralleize detection.
pool = Pool(args.num_workers, worker,
(input_q, output_q, cap_params, frame_processed))
start_time = datetime.datetime.now()
num_frames = 0
fps = 0
index = 0
while True:
frame = video_capture.read()
frame = cv2.flip(frame, 1)
index += 1
input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output_frame = output_q.get()
output_frame = cv2.cvtColor(output_frame, cv2.COLOR_RGB2BGR)
elapsed_time = (datetime.datetime.now() -
start_time).total_seconds()
num_frames += 1
fps = num_frames / elapsed_time
# print("frame ", index, num_frames, elapsed_time, fps)
if (output_frame is not None):
if (args.display > 0):
if (args.fps > 0):
detector_utils.draw_fps_on_image(
"FPS : " + str(int(fps)), output_frame)
cv2.imshow('Muilti - threaded Detection', output_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
if (num_frames == 400):
num_frames = 0
start_time = datetime.datetime.now()
else:
print("frames processed: ", index,
"elapsed time: ", elapsed_time, "fps: ", str(int(fps)))
else:
# print("video end")
break
elapsed_time = (datetime.datetime.now() -
start_time).total_seconds()
fps = num_frames / elapsed_time
print("fps", fps)
pool.terminate()
video_capture.stop()
cv2.destroyAllWindows()