-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_stage1.py
executable file
·419 lines (333 loc) · 18.1 KB
/
train_stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import argparse
import logging
import os
from typing import Iterable, Optional
from typing import Any, Dict, List, Optional, Tuple, Union
import json
import time
import random
from packaging import version
import torch.nn.functional as F
from einops import rearrange
import torch.utils.checkpoint
import transformers
import mydatasets,diffusers
from tqdm.auto import tqdm
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, DummyOptim, DummyScheduler
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from src.models.myprior_transformer import MyPriorTransformer
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils import check_min_version, is_wandb_available
from mydatasets.flintstones import FlintDataset,Collate_fn
from mydatasets.pororosv import PororosvDataset
from configs.stage1_config import args
from omegaconf import OmegaConf
logger = get_logger(__name__)
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
checkpoint_state_dict = {
"epoch": epoch,
"last_global_step": last_global_step,
}
# Add extra kwargs too
checkpoint_state_dict.update(kwargs)
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict)
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}"
if success:
logging.info(f"Success {status_msg}")
else:
logging.warning(f"Failure {status_msg}")
return
def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
checkpoint_state_dict= torch.load(load_dir, map_location="cpu")
print(checkpoint_state_dict.keys())
epoch = checkpoint_state_dict["epoch"]
last_global_step = checkpoint_state_dict["last_global_step"]
# TODO optimizer lr, and loss state
weight_dict = checkpoint_state_dict["module"]
new_weight_dict = {f"module.{key}": value for key, value in weight_dict.items()}
model.load_state_dict(new_weight_dict)
del checkpoint_state_dict
return model, epoch, last_global_step
def count_model_params(model):
return sum([p.numel() for p in model.parameters()]) / 1e6
def main(unet_additional_kwargs: Dict = {},):
token_number = {
'flintstones': [91, 49412],
'pororosv': [85, 49416],
}
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
log_with=args.report_to,
project_dir=logging_dir,
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
torch.backends.cuda.matmul.allow_tf32 = True
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load models and create wrapper for stable diffusion
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, subfolder="image_encoder")
text_encoder = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
# prior_model = MyPriorTransformer.from_pretrained(args.pretrained_model_name_or_path, subfolder="prior", num_embeddings=2, embedding_dim=1024, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
prior_model = MyPriorTransformer.from_pretrained_2d(args.pretrained_model_name_or_path, subfolder="prior",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs))
# print(prior_model)
max_lengths = token_number[args.dataset][0]
text_encoder.resize_token_embeddings(token_number[args.dataset][1])
old_embeddings = text_encoder.text_model.embeddings.position_embedding
new_embeddings = text_encoder._get_resized_embeddings(old_embeddings, max_lengths)
text_encoder.text_model.embeddings.position_embedding = new_embeddings
text_encoder.config.max_position_embeddings = max_lengths
text_encoder.max_position_embeddings = max_lengths
text_encoder.text_model.embeddings.position_ids = torch.arange(max_lengths).expand((1, -1))
# Freeze vae and text_encoder
image_encoder.requires_grad_(False)
text_encoder.requires_grad_(False)
clip_mean = prior_model.clip_mean.clone()
clip_std = prior_model.clip_std.clone()
# clip_mean = torch.tensor(-0.016)
# clip_std = torch.tensor(0.415)
#
# prior_model.clip_mean = None
# prior_model.clip_std = None
accelerator.print("The Model parameters: Prior_model {:.2f}M, Image: {:.2f}M".format(
count_model_params(prior_model), count_model_params(image_encoder)
))
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
prior_model.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if args.gradient_checkpointing:
prior_model.enable_gradient_checkpointing()
# Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer
if (accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config):
optimizer = torch.optim.AdamW(prior_model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
else:
# use deepspeed config
optimizer = DummyOptim(
prior_model.parameters(),
lr=accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"]["params"]["lr"],
weight_decay=accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"]["params"]["weight_decay"]
)
# TODO (patil-suraj): load scheduler using args
noise_scheduler = DDPMScheduler(beta_schedule='squaredcos_cap_v2', prediction_type='sample')
if args.dataset=='flintstones':
dataset = FlintDataset(
sr=args.sr,
text_encoder_path=args.pretrained_model_name_or_path,
)
elif args.dataset=='pororosv':
dataset = PororosvDataset(
sr=args.sr,
text_encoder_path=args.pretrained_model_name_or_path,
)
train_dataloader = torch.utils.data.DataLoader(
dataset, shuffle=True, collate_fn=Collate_fn, batch_size=args.train_batch_size, num_workers=8,
pin_memory=True,
)
if accelerator.state.deepspeed_plugin is not None:
# here we use agrs.gradient_accumulation_steps
accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"] = args.gradient_accumulation_steps
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
if (accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config):
lr_scheduler = get_scheduler(name=args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,)
else:
# use deepspeed scheduler
lr_scheduler = DummyScheduler(optimizer,
warmup_num_steps=accelerator.state.deepspeed_plugin.deepspeed_config["scheduler"]["params"]["warmup_num_steps"])
if (accelerator.state.deepspeed_plugin is not None
and accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto"):
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
prior_model, optimizer, lr_scheduler = accelerator.prepare(prior_model, optimizer, lr_scheduler)
# weight_dtype = torch.float32
if accelerator.state.deepspeed_plugin is None:
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
if accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]:
weight_dtype = torch.float16
elif accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]:
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
# text_encoder.to(accelerator.device, dtype=weight_dtype)
# pose_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
clip_mean = clip_mean.to(weight_dtype).to(accelerator.device)
clip_std = clip_std.to(weight_dtype).to(accelerator.device)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2image", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
# New Code #
# Loads the DeepSpeed checkpoint from the specified path
prior_model, last_epoch, last_global_step = load_training_checkpoint(
prior_model,
args.resume_from_checkpoint,
**{"load_optimizer_states": True, "load_lr_scheduler_states": True},
)
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}, global step: {last_global_step}")
starting_epoch = last_epoch
global_steps = last_global_step
prior_model = prior_model
else:
global_steps = 0
starting_epoch = 0
prior_model = prior_model
progress_bar = tqdm(range(global_steps, args.max_train_steps), initial=global_steps, desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process, )
for epoch in range(starting_epoch, args.num_train_epochs):
prior_model.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
#TODO resume model
with torch.no_grad():
# Convert target images to latent space
target_image = batch["reference_image"] # b, f, 3, 224, 224
target_image = rearrange(target_image, "b f c h w -> (b f) c h w")
image_embeds = (image_encoder(target_image.to(accelerator.device, dtype=weight_dtype)).image_embeds).unsqueeze(1) #(b f) 1, 1024
# image_embeds = rearrange(image_embeds, "(b f) c hw -> b c f hw", f=5) # b, 1, 5, 1024
# Convert source images to latent space
source_image = batch["source_clip_image"] # b, f, c, h, w
source_image = rearrange(source_image, "b f c h w -> (b f) c h w")
masked_label = batch["masked_label_clip"].to(accelerator.device, dtype=weight_dtype)
masked_label = rearrange(masked_label, "b f c h w -> (b f) c h w" )
# imgs_encoder_hidden_states = image_encoder(source_image.to(accelerator.device, dtype=weight_dtype),
# output_hidden_states=True).last_hidden_state # [b, 257, 1280]
imgs_proj_embeds = image_encoder(source_image.to(accelerator.device, dtype=weight_dtype),
output_hidden_states=True).image_embeds.unsqueeze(1) # [b, 1, 1280]
masked_label_embeds = image_encoder(masked_label.to(accelerator.device, dtype=weight_dtype),
output_hidden_states=True).image_embeds.unsqueeze(1) # [b, 1, 1280]
text_mask = batch["text_mask"].to(accelerator.device)
text_encoder_output = text_encoder(batch["input_ids"].to(accelerator.device))
prompt_embeds = text_encoder_output.text_embeds # (b f), 1, 1280
text_encoder_hidden_states = text_encoder_output.last_hidden_state #(b f) 91, 1280
noise = torch.randn_like(image_embeds)
# 添加 offset
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((image_embeds.shape[0], image_embeds.shape[1], 1), device=image_embeds.device)
# Sample a random timestep for each image
bsz = image_embeds.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,),
device=image_embeds.device)
timesteps = timesteps.long()
# 归一化
image_embeds = (image_embeds - clip_mean) / clip_std
# 加噪
noisy_x = noise_scheduler.add_noise(image_embeds, noise, timesteps)
#Groud Truth
target = image_embeds.squeeze(1)
with accelerator.accumulate(prior_model):
model_pred = prior_model(
noisy_x,
timestep=timesteps,
proj_embedding=prompt_embeds,
encoder_hidden_states=text_encoder_hidden_states,
proj_embedding1=imgs_proj_embeds,
mask_label = masked_label_embeds,
# encoder_hidden_states1=imgs_encoder_hidden_states,
# attention_mask=None,
attention_mask=text_mask,
).predicted_image_embedding
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item()
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(prior_model.parameters(), args.max_grad_norm)
optimizer.step() # do nothing
lr_scheduler.step() # only for not deepspeed lr_scheduler
optimizer.zero_grad() # do nothing
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_steps += 1
accelerator.log({"train_loss": train_loss}, step=global_steps)
train_loss = 0.0
if global_steps % args.checkpointing_steps == 0:
checkpoint_model(
args.output_dir, global_steps, prior_model, epoch, global_steps
)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_steps)
if global_steps >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Save last model
checkpoint_model(args.output_dir, global_steps, prior_model, epoch, global_steps)
accelerator.end_training()
if __name__ == "__main__":
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
config = OmegaConf.load(args.config)
main(**config)