Skip to content

Files

Latest commit

 

History

History

DeViSE

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Running the code

Train

python devise/devise_gzsl.py -data AWA2/AWA1/CUB/SUN/APY -e [EPOCHS] -es [EARLY STOP] -norm [NORMALIZATION TYPE] -lr [LEARNING RATE] -mr [SVM LOSS MARGIN]

For testing, set learning rate (lr), margin (mr), and normalization type (norm) to best combination from the tables below.

Results

The numbers below are class-averaged top-1 accuracies (see ZSLGBU paper for details).

Classical ZSL

Dataset ZSLGBU Results Repository Results Hyperparams from Val
CUB 52.0 44.07 lr=1.0, mr=1.0, norm=L2
AWA1 54.2 55.25 lr=0.01, mr=200, norm=std
AWA2 59.7 57.68 lr=0.001, mr=150, norm=std
aPY 39.8 33.33 lr=1.0, mr=1.0, norm=L2
SUN 56.5 55.69 lr=0.01, mr=3.0, norm=None

Generalized ZSL

To be updated soon...

References

No existing codebases found!