-
Notifications
You must be signed in to change notification settings - Fork 8
/
course_sem_exam1_library.tex
184 lines (163 loc) · 4.41 KB
/
course_sem_exam1_library.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
\documentclass{article}
% \usepackage{multicol}
\usepackage{amsmath,amssymb}
\usepackage[margin=3cm]{geometry}
\usepackage{graphicx,color}
\newcounter{zone}
\setcounter{zone}{0}
\newcommand{\zone}{\clearpage\refstepcounter{zone}\section*{Zone \arabic{zone}}}
\newcounter{question}
\setcounter{question}{0}
\newcounter{variant}
\newcounter{questionpoints}
\newcommand{\question}[1]{\newpage \refstepcounter{question} \setcounter{variant}{0} \setcounter{questionpoints}{#1}}
\newcommand{\variant}{\vspace{4em}\refstepcounter{variant}\noindent \arabic{question}/\arabic{variant}. (\arabic{questionpoints} point\ifnum \thequestionpoints > 1 s\fi) }
\newenvironment{answers}{\begin{enumerate}}{\end{enumerate}}
% \newenvironment{columnanswers}{\begin{multicols}{2}\begin{enumerate}}{\end{enumerate}\end{multicols}}
\newcommand{\answer}{\item }
\newcommand{\correctanswer}{\item $\bigstar$ }
\renewcommand{\theenumi}{\Alph{enumi}}
\newenvironment{solution}{{\bf Solution.} }{\vspace*{.3in}\hrule}
\begin{document}
\begin{center}
\textbf{\Large Exam}
\end{center}
\bigskip
\noindent
\begin{itemize}
\item There are 3 problems worth points as shown in each question.
\item You must not communicate with other students during this test.
\item No books, notes, calculators, or electronic devices allowed.
\item This is a 20 minute exam.
\item Do not turn this page until instructed to.
\item There are several different versions of this exam.
\end{itemize}
\bigskip\bigskip
\noindent
\textbf{\Large 1. Fill in your information:}
\bigskip
{\Large\bf
\begin{tabular}{ll}
Full Name: & \underbar{\hskip 8cm} \\[0.5em]
UIN (Student Number): & \underbar{\hskip 8cm} \\[0.5em]
NetID: & \underbar{\hskip 8cm}
\end{tabular}
}
\bigskip
\bigskip
\noindent
\textbf{\Large 2. Fill in the following answers on the Scantron form:}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\zone
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question{3} % worth 3 points
\variant
What is $\displaystyle
\sum_{n=0}^\infty
\frac{3^{n+1}}{4^n}$?
\begin{answers}
\answer $1/4$
\correctanswer $12$
\answer $3/4$
\answer $4$
\answer $36$
\end{answers}
\begin{solution}
\[ = 3 \sum_{n=0}^\infty
\left(\frac{3}{4}\right)^n
= 3 \frac{1}{1 - 3/4}
= 12 \]
\end{solution}
\variant
What is $\displaystyle
\sum_{n=0}^\infty
\frac{2^{n+1}}{3^n}$?
\begin{answers}
\answer $3$
\answer $1/3$
\answer $2/3$
\correctanswer $6$
\answer $12$
\end{answers}
\begin{solution}
\[ = 2 \sum_{n=0}^\infty
\left(\frac{2}{3}\right)^n
= 2 \frac{1}{1 - 2/3}
= 6 \]
\end{solution}
\variant
What is $\displaystyle \sum_{n=0}^\infty \frac{3^{n+1}}{5^n}$?
\begin{answers}
\answer $2/5$
\answer $5$
\answer $1/5$
\correctanswer $15/2$
\answer $10$
\end{answers}
\begin{solution}
\[ = 3 \sum_{n=0}^\infty \left(\frac{3}{5}\right)^n = 3 \frac{1}{1 - 3/5} = 15/2 \]
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question{1}
\variant
Find the average value of the function $f(x) = \displaystyle x\,
\sqrt{2x^2+1}$ on the interval $[0,2]$.
\begin{answers}
\correctanswer $\frac{13}{6}$
\answer $\frac{\sqrt2}{3}$
\answer $\frac{\sqrt2}{6}$
\answer $\frac{13}{3}$
\answer $\frac{26}{3}$
\end{answers}
\begin{solution}
\end{solution}
\variant
Find the average value of the function $f(x) = \displaystyle x\,
\sqrt{5x^2-4}$ on the interval $[1,2]$.
\begin{answers}
\correctanswer $\frac{21}{10}$
\answer $\frac{21}{5}$
\answer $\frac{2\sqrt2}{15}$
\answer $\frac{\sqrt2}{15}$
\answer $21$
\end{answers}
\begin{solution}
\end{solution}
\variant
Find the average value of the function $f(x) = \displaystyle
\sqrt{8x+1}$ on the interval $[1,3]$.
\begin{answers}
\correctanswer $\frac{49}{12}$
\answer $\frac{3\sqrt3-1}{24}$
\answer $\frac{3\sqrt3-1}{12}$
\answer $\frac{49}{6}$
\answer $\frac{98}{3}$
\end{answers}
\begin{solution}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\question{1}
\variant
Evaluate $\displaystyle\int_{\pi}^{2 \pi} x^2\cos x \, dx$.
\begin{answers}
\answer $-6\pi$
\answer $-2\pi$
\answer $0$
\answer $2\pi$
\correctanswer $6\pi$
\end{answers}
\begin{solution}
\end{solution}
\variant
Evaluate $\displaystyle\int_{\pi/2}^{3\pi/2} x^2\sin x \, dx$.
\begin{answers}
\correctanswer $-4\pi$
\answer $-8\pi$
\answer $8\pi$
\answer $0$
\answer $4\pi$
\end{answers}
\begin{solution}
\end{solution}
\end{document}