forked from galaxyproject/training-material
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
298 lines (170 loc) · 7.01 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
layout: introduction_slides
topic_name: RNA-Seq
logo: "GTN"
---
# What is RNA sequencing?
---
### RNA sequencing
RNA
- Transcribed form of the DNA
- Active state of the DNA
RNA sequencing
- RNA quantification at single base resolution
- Cost efficient analysis of the whole transcriptome in a high-throughput manner
---
### Where does my data come from?
![](../images/RNA_seq_zang2016.png)
<small>[*Zang and Mortazavi, Nature, 2012*](http://www.nature.com/ni/journal/v13/n9/full/ni.2407.html)</small>
---
### Principle of RNA sequencing
![](../images/korf_2013.jpg)
<small>[*Korf, Nat Met, 2013*](http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2735.html)</small>
---
### Challenges of RNA sequencing
- Different origin for the sample RNA and the reference genome
- Presence of incompletely processed RNAs or transcriptional background noise
- Sequencing biases (*e.g.* PCR library preparation)
---
### Benefits of RNA sequencing
![](../images/wordcloud.png)
---
### FASTQ-files
```bash
@4:1:4888:1039:Y
TGAACGCTGTTTCCAAGAAATGCTGGAAGAGGTCGATGGGTGTTATCTCTG
+
IIIHIIIIIIIIIIIIIIIIIIIIIIIIIH!CBCBBBB@=B@A?1@==<@=
```
- 50+ million reads per data set (~15 GB data for one human fastq-file)
- Unique identifier per read
- Nucleotide sequence with single base resolution
- Quality score for each base
---
### 2 main research applications for RNA-Seq
- Transcript discovery
> *Which RNA molecules are in my sample?*
- Novel isoforms and alternative splicing
- Non-coding RNAs
- Single nucleotide variations
- Fusion genes
- RNA quantification
> *What is the concentration of RNAs?*
- Absolute gene expression (within sample)
- Differential gene expression (between biological samples)
- Isoform expression / differential exon usage / alternative splicing
---
## How to analyze RNA seq data for RNA quantification?
---
### RNA quantification
![](../images/pepke_2009.jpg)
<small>[*Pepke et al, Nat Met, 2009*](http://www.nature.com/nmeth/journal/v6/n11s/full/nmeth.1371.html)</small>
---
### Overview of the Data Processing
![](../images/rna_quantification.png)
- No available standardized workflow
- Multiple possible best practices for every dataset
---
## Data Pre-processing
.image-50[![](../images/rna_quantification_preprocessing.png)]
1. Adapter clipping to trim the sequencing adapters
2. Quality trimming to remove wrongly called and low quality bases
.footnote[See [NGS Quality control](../../NGS-QC/slides/index.html)]
---
## Annotation of RNA-Seq reads
.image-75[![](../images/rna_quantification_annotation.png)]
How do I identify my reads?
---
### 3 main strategies for annotations
![](../images/RNA_seq_conesa2016.png)
<small>
[*Conesa et al, Genome Biol, 2016*](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8)
</small>
---
### Sources of reference annotations
- Joint projects to produce and maintain annotations on selected organisms: EMBL-EBI, UCSC, RefSeq, Ensembl, ...
- Annotations of known genes, repeats, ... in GTF file format
---
### Transcriptome alignment
![](../images/transcriptome_alignment.png)
*See [NGS Mapping](../../NGS-mapping/slides/index.html)*
- Need reliable gene models
- No detection of novel genes
.footnote[Figures by Ernest Turro, EMBO Practical Course on Analysis of HTS Data, 2012]
---
### Genome alignment
Splice-aware read alignment
![](../images/genome_alignment.png)
Detection of novel genes and isoforms
.footnote[Figures by Ernest Turro, EMBO Practical Course on Analysis of HTS Data, 2012]
---
### *De novo* transcriptome assembly
No need for a reference genome ...
---
## Quantification of transcript level
![](../images/rna_quantification_quantification.png)
What is the expression level of the genomic features?
---
### Counting the number of reads per features
Easy!!
But some challenges
- How to handle multi-mapped reads (*i.e.* reads with multiple alignments)?
- How to distinguish between different isoforms?
- At gene level?
- At transcript level?
- At exon level?
---
## Differential Expression Analysis
![](../images/rna_quantification.png)
---
### Differential Expression Analysis
.image-75[![](../images/RNA_seq_DEscheme.png)]
Account for variability of expression across biological replicates<br>with the help of counts
---
### Normalization
Make the expression levels comparable across
- Features: genes, isoforms
- Libraries: samples
---
### Normalization methods
- [*FPKM/RPKM*](http://www.nature.com/nmeth/journal/v5/n7/abs/nmeth.1226.html) (Cufflinks/Cuffdiff)
- [*TMM*](https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25) (edgeR)
- [*DESeq2*](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8) (DESeq2)
Normalize counts *k<sub>ij</sub>* for gene *i* in library *j* by size factor *s<sub>j</sub>*
.footnote[*"Only the DESeq and TMM normalization methods are robust to the presence of different library sizes and widely different library compositions..."* - Dillies et al., Brief Bioinf, 2013]
---
### Analysis of Differential Gene Expression (DGE)
Idea
- Model the gene counts by negative binomial distribution
- Account for variability of gene expression across biological replicates
---
### Impact of sequencing depth and number of replicates
.image-50[![](../images/RNA_seq_numreplicates.png)]
<small> [*Conesa et al, Genome Biol, 2016*](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8)</small>
**Recommendation: At least 3 biological replicates**
???
- Number of replicates has greater effect on DE detection accuracy than sequencing depth (more replicates = increased statistical power)
- DE detection of lowly expressed genes is very sensitive to number of reads and replication
- DE detection of highly expressed genes possible already at low sequencing depth
---
### Detection of Alternative Splicing
![](../images/RNA_seq_splicescheme.png)
<small>
[*Hooper, Hum. Genomics, 2014*](http://humgenomics.biomedcentral.com/articles/10.1186/1479-7364-8-3)
</small>
---
### Visualization
- Integrative Genomics Viewer ([*IGV*](http://bib.oxfordjournals.org/content/14/2/178.full?keytype=ref&%2520ijkey=qTgjFwbRBAzRZWC))
Visualization of the aligned BAM files
- [*Sashimi plots*](http://bioinformatics.oxfordjournals.org/content/early/2015/01/21/bioinformatics.btv034)
Quantitative visualization of read coverage along exons and splice junctions
- [*CummeRbund*](http://compbio.mit.edu/cummeRbund/manual_2_0.html)
Visualization package for Cufflinks high-throughput sequencing data
---
### Where do I find data?
- Sequencing data which you have prepared by yourself or you have obtained from your colleagues
- Sequence Read Archive - [*SRA*](https://www.ncbi.nlm.nih.gov/sra)
- Gene Expression Omnibus - [*GEO*](https://www.ncbi.nlm.nih.gov/geo/)
- Ensembl - [*e!*](http://www.ensembl.org/info/website/tutorials/sequence.html)
- The Cancer Genome Atlas - [*TCGA*](https://tcga-data.nci.nih.gov/docs/publications/tcga/?)
- ... our tutorial