-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstiching.py
56 lines (45 loc) · 1.48 KB
/
stiching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import cv2
import numpy as np
def get_sift_homography(img1, img2):
# Initialize SIFT
sift = cv2.xfeatures2d.SIFT_create()
# Extract keypoints and descriptors
k1, d1 = sift.detectAndCompute(img1, None)
k2, d2 = sift.detectAndCompute(img2, None)
# Bruteforce matcher on the descriptors
bf = cv2.BFMatcher()
matches = bf.knnMatch(d1,d2, k=2)
# Make sure that the matches are good
verify_ratio = 0.8 # Source: stackoverflow
verified_matches = []
for m1,m2 in matches:
# Add to array only if it's a good match
if m1.distance < verify_ratio * m2.distance:
verified_matches.append(m1)
# Mimnum number of matches
min_matches = 8
if len(verified_matches) > min_matches:
# Array to store matching points
img1_pts = []
img2_pts = []
# Add matching points to array
for match in verified_matches:
img1_pts.append(k1[match.queryIdx].pt)
img2_pts.append(k2[match.trainIdx].pt)
img1_pts = np.float32(img1_pts).reshape(-1,1,2)
img2_pts = np.float32(img2_pts).reshape(-1,1,2)
# Compute homography matrix
M, _ = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
return M
else:
print ('Error: Not enough matches')
exit()
img1 = cv2.imread("C:\\Users\\THINK\\Pictures\\house1.jpg")
img2 = cv2.imread("C:\\Users\\THINK\\Pictures\\house2.jpg")
M = get_sift_homography(img1, img2)
result = cv2.warpPerspective(img2,M,(img1.shape[1],img1.shape[0]))
# show the images
img = np.hstack((img1,img2))
cv2.imshow("Image", img)
cv2.imshow("Result", result)
cv2.waitKey(0)