-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
46 lines (42 loc) · 2.14 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch.nn as nn
import torch
import pdb
class LSTMPredictor(nn.Module):
def __init__(self, embedding_size, hidden_size, context_size=32, num_layers=3, drop_prob=0.5):
super(LSTMPredictor, self).__init__()
self.lstm = nn.LSTM(embedding_size, hidden_size, num_layers=num_layers, batch_first=True, dropout=drop_prob)
self.context_size = context_size
self.dropout = nn.Dropout(drop_prob)
self.linear1 = nn.Linear(hidden_size, hidden_size)
self.relu = nn.ReLU()
self.linear3 = nn.Linear(hidden_size+1, 2)
def forward(self, embeddings, entropy):
output, _ = self.lstm(embeddings)
#output = self.dropout(output)
output = self.linear1(output)
output = self.relu(output)
selected_output = output[:, self.context_size-1:, :]
selected_output = torch.cat((selected_output, entropy.unsqueeze(2)), dim=2)
classes = self.linear3(selected_output) # newly added for classes output
#pdb.set_trace()
classes = torch.nn.functional.log_softmax(classes, dim=2) # if you want output in [0, 1]
return classes
class TransformerPredictor(nn.Module):
def __init__(self, embedding_size, hidden_size, context_size=32, num_layers=4, drop_prob=0.5):
super(TransformerPredictor, self).__init__()
transformer_layer = nn.TransformerEncoderLayer(d_model=embedding_size, nhead=8)
self.transformer = nn.TransformerEncoder(transformer_layer, num_layers=num_layers)
self.context_size = context_size
self.dropout = nn.Dropout(drop_prob)
self.linear1 = nn.Linear(embedding_size, hidden_size)
self.relu = nn.ReLU()
self.linear3 = nn.Linear(hidden_size + 1, 2)
def forward(self, embeddings, entropy):
output = self.transformer(embeddings)
output = self.linear1(output)
output = self.relu(output)
selected_output = output[:, self.context_size - 1:, :]
selected_output = torch.cat((selected_output, entropy.unsqueeze(2)), dim=2)
classes = self.linear3(selected_output)
classes = torch.nn.functional.log_softmax(classes, dim=2)
return classes