forked from vadimkantorov/contextlocnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
opts.lua
91 lines (72 loc) · 2.42 KB
/
opts.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
local DATA = os.getenv('DATA') or 'data'
local DATA_COMMON = os.getenv('DATA_COMMON') or paths.concat(DATA, 'common')
PATHS =
{
EXTERNAL =
{
PRETRAINED_MODEL_VGGF =
{
PROTOTXT = paths.concat(DATA_COMMON, 'VGG_CNN_F_deploy.prototxt'),
CAFFEMODEL = paths.concat(DATA_COMMON, 'VGG_CNN_F.caffemodel'),
},
SSW_VOC2007 =
{
trainval = paths.concat(DATA_COMMON, 'SelectiveSearchVOC2007trainval.mat'),
test = paths.concat(DATA_COMMON, 'SelectiveSearchVOC2007test.mat')
},
SSW_VOC2012 =
{
trainval = paths.concat(DATA_COMMON, 'selective_search_data/voc_2012_trainval.mat'),
test = paths.concat(DATA_COMMON, 'selective_search_data/voc_2012_test.mat')
},
VOC_DEVKIT_VOCYEAR =
{
VOC2007 = paths.concat(DATA_COMMON, 'VOCdevkit_2007/VOC2007'),
VOC2012 = paths.concat(DATA_COMMON, 'VOCdevkit_2012/VOC2012')
}
},
BASE_MODEL_CACHED =
{
VGGF = paths.concat(DATA_COMMON, 'VGG_CNN_F.t7')
},
DATASET_CACHED_PATTERN = paths.concat(DATA_COMMON, '%s_%s.t7'),
CHECKPOINT_PATTERN = paths.concat(DATA, 'model_epoch%02d.h5'),
LOG = paths.concat(DATA, 'log.json'),
SCORES_PATTERN = paths.concat(DATA, 'scores_%s.h5'),
CORLOC = paths.concat(DATA, 'corloc.json'),
DETECTION_MAP = paths.concat(DATA, 'detection_mAP.json'),
}
local DATASET = os.getenv('DATASET') or 'VOC2007'
local NUM_EPOCHS = tonumber(os.getenv('NUM_EPOCHS')) or 30
local SUBSET = os.getenv('SUBSET') or 'trainval'
local BASE_MODEL = 'VGGF'
opts = {
ROI_FACTOR = 1.8,
SEED = 1,
NMS_OVERLAP_THRESHOLD = 0.4,
NMS_SCORE_THRESHOLD = 1e-4,
IMAGE_SCALES = {{608, 800}, {496, 656}, {400, 544}, {720, 960}, {864, 1152}}, --{{608, 800}, {368, 480}, {432, 576}, {528, 688}, {656, 864}, {912, 1200}}
NUM_SCALES = 5,
NUM_EPOCHS = NUM_EPOCHS,
OUTPUT_FIELDS = {'output_prod'},
DATASET = DATASET,
BASE_MODEL = BASE_MODEL,
SUBSET = SUBSET,
PATHS =
{
MODEL = arg[1],
DATA = DATA,
DATA_COMMON = DATA_COMMON,
CHECKPOINT_PATTERN = PATHS.CHECKPOINT_PATTERN,
LOG = PATHS.LOG,
SCORES_PATTERN = PATHS.SCORES_PATTERN,
BASE_MODEL_CACHED = PATHS.BASE_MODEL_CACHED[BASE_MODEL],
BASE_MODEL_RAW = PATHS.EXTERNAL['PRETRAINED_MODEL_' .. BASE_MODEL],
PROPOSALS = PATHS.EXTERNAL['SSW_' .. DATASET],
VOC_DEVKIT_VOCYEAR = PATHS.EXTERNAL.VOC_DEVKIT_VOCYEAR[DATASET],
DATASET_CACHED = PATHS.DATASET_CACHED_PATTERN:format(DATASET, 'SSW'),
CORLOC = PATHS.CORLOC,
DETECTION_MAP = PATHS.DETECTION_MAP,
RUN_STATS_PATTERN = PATHS.RUN_STATS_PATTERN
}
}