-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
train.lua
718 lines (697 loc) · 24.4 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
require 'pl'
local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
require 'optim'
require 'xlua'
require 'image'
require 'w2nn'
local threads = require 'threads'
local settings = require 'settings'
local srcnn = require 'srcnn'
local minibatch_adam = require 'minibatch_adam'
local iproc = require 'iproc'
local reconstruct = require 'reconstruct'
local image_loader = require 'image_loader'
local function save_test_scale(model, rgb, file)
local up = reconstruct.scale(model, settings.scale, rgb)
image.save(file, up)
end
local function save_test_jpeg(model, rgb, file)
local im, count = reconstruct.image(model, rgb)
image.save(file, im)
end
local function save_test_user(model, rgb, file)
if settings.scale == 1 then
save_test_jpeg(model, rgb, file)
else
save_test_scale(model, rgb, file)
end
end
local function split_data(x, test_size)
if settings.validation_filename_split then
if not (x[1][2].data and x[1][2].data.basename) then
error("`images.t` does not have basename info. You need to re-run `convert_data.lua`.")
end
local basename_db = {}
for i = 1, #x do
local meta = x[i][2].data
if basename_db[meta.basename] then
table.insert(basename_db[meta.basename], x[i])
else
basename_db[meta.basename] = {x[i]}
end
end
local basename_list = {}
for k, v in pairs(basename_db) do
table.insert(basename_list, v)
end
local index = torch.randperm(#basename_list)
local train_x = {}
local valid_x = {}
local pos = 1
for i = 1, #basename_list do
if #valid_x >= test_size then
break
end
local xs = basename_list[index[pos]]
for j = 1, #xs do
table.insert(valid_x, xs[j])
end
pos = pos + 1
end
for i = pos, #basename_list do
local xs = basename_list[index[i]]
for j = 1, #xs do
table.insert(train_x, xs[j])
end
end
return train_x, valid_x
else
local index = torch.randperm(#x)
local train_size = #x - test_size
local train_x = {}
local valid_x = {}
for i = 1, train_size do
train_x[i] = x[index[i]]
end
for i = 1, test_size do
valid_x[i] = x[index[train_size + i]]
end
return train_x, valid_x
end
end
local g_transform_pool = nil
local g_mutex = nil
local g_mutex_id = nil
local function transform_pool_init(has_resize, offset)
local nthread = torch.getnumthreads()
if (settings.thread > 0) then
nthread = settings.thread
end
g_mutex = threads.Mutex()
g_mutex_id = g_mutex:id()
g_transform_pool = threads.Threads(
nthread,
threads.safe(
function(threadid)
require 'pl'
local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
require 'torch'
require 'nn'
require 'cunn'
torch.setnumthreads(1)
torch.setdefaulttensortype("torch.FloatTensor")
local threads = require 'threads'
local compression = require 'compression'
local pairwise_transform = require 'pairwise_transform'
function transformer(x, is_validation, n)
local mutex = threads.Mutex(g_mutex_id)
local meta = {data = {}}
local y = nil
if type(x) == "table" and type(x[2]) == "table" then
meta = x[2]
if x[1].x and x[1].y then
y = compression.decompress(x[1].y)
x = compression.decompress(x[1].x)
else
x = compression.decompress(x[1])
end
else
x = compression.decompress(x)
end
n = n or settings.patches
if is_validation == nil then is_validation = false end
local random_color_noise_rate = nil
local random_overlay_rate = nil
local active_cropping_rate = nil
local active_cropping_tries = nil
if is_validation then
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = 0.0
random_overlay_rate = 0.0
else
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = settings.random_color_noise_rate
random_overlay_rate = settings.random_overlay_rate
end
if settings.method == "scale" then
local conf = tablex.update({
mutex = mutex,
downsampling_filters = settings.downsampling_filters,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
random_blur_rate = settings.random_blur_rate,
random_blur_size = settings.random_blur_size,
random_blur_sigma_min = settings.random_blur_sigma_min,
random_blur_sigma_max = settings.random_blur_sigma_max,
max_size = settings.max_size,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb"),
x_upsampling = not has_resize,
resize_blur_min = settings.resize_blur_min,
resize_blur_max = settings.resize_blur_max}, meta)
return pairwise_transform.scale(x,
settings.scale,
settings.crop_size, offset,
n, conf)
elseif settings.method == "noise" then
local conf = tablex.update({
mutex = mutex,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
random_blur_rate = settings.random_blur_rate,
random_blur_size = settings.random_blur_size,
random_blur_sigma_min = settings.random_blur_sigma_min,
random_blur_sigma_max = settings.random_blur_sigma_max,
max_size = settings.max_size,
jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
nr_rate = settings.nr_rate,
rgb = (settings.color == "rgb")}, meta)
return pairwise_transform.jpeg(x,
settings.style,
settings.noise_level,
settings.crop_size, offset,
n, conf)
elseif settings.method == "noise_scale" then
local conf = tablex.update({
mutex = mutex,
downsampling_filters = settings.downsampling_filters,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
random_blur_rate = settings.random_blur_rate,
random_blur_size = settings.random_blur_size,
random_blur_sigma_min = settings.random_blur_sigma_min,
random_blur_sigma_max = settings.random_blur_sigma_max,
max_size = settings.max_size,
jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
nr_rate = settings.nr_rate,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb"),
x_upsampling = not has_resize,
resize_blur_min = settings.resize_blur_min,
resize_blur_max = settings.resize_blur_max}, meta)
return pairwise_transform.jpeg_scale(x,
settings.scale,
settings.style,
settings.noise_level,
settings.crop_size, offset,
n, conf)
elseif settings.method == "user" then
local random_erasing_rate = 0
local random_erasing_n = 0
local random_erasing_rect_min = 0
local random_erasing_rect_max = 0
if is_validation then
else
random_erasing_rate = settings.random_erasing_rate
random_erasing_n = settings.random_erasing_n
random_erasing_rect_min = settings.random_erasing_rect_min
random_erasing_rect_max = settings.random_erasing_rect_max
end
local conf = tablex.update({
gcn = settings.gcn,
max_size = settings.max_size,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
random_pairwise_rotate_rate = settings.random_pairwise_rotate_rate,
random_pairwise_rotate_min = settings.random_pairwise_rotate_min,
random_pairwise_rotate_max = settings.random_pairwise_rotate_max,
random_pairwise_scale_rate = settings.random_pairwise_scale_rate,
random_pairwise_scale_min = settings.random_pairwise_scale_min,
random_pairwise_scale_max = settings.random_pairwise_scale_max,
random_pairwise_negate_rate = settings.random_pairwise_negate_rate,
random_pairwise_negate_x_rate = settings.random_pairwise_negate_x_rate,
pairwise_y_binary = settings.pairwise_y_binary,
pairwise_flip = settings.pairwise_flip,
random_erasing_rate = random_erasing_rate,
random_erasing_n = random_erasing_n,
random_erasing_rect_min = random_erasing_rect_min,
random_erasing_rect_max = random_erasing_rect_max,
rgb = (settings.color == "rgb")}, meta)
return pairwise_transform.user(x, y,
settings.crop_size, offset,
n, conf)
end
end
end)
)
g_transform_pool:synchronize()
end
local function make_validation_set(x, n, patches)
local nthread = torch.getnumthreads()
if (settings.thread > 0) then
nthread = settings.thread
end
n = n or 4
local validation_patches = math.min(16, patches or 16)
local data = {}
g_transform_pool:synchronize()
torch.setnumthreads(1) -- 1
for i = 1, #x do
for k = 1, math.max(n / validation_patches, 1) do
local input = x[i]
g_transform_pool:addjob(
function()
local xy = transformer(input, true, validation_patches)
return xy
end,
function(xy)
for j = 1, #xy do
table.insert(data, {x = xy[j][1], y = xy[j][2]})
end
end
)
end
if i % 20 == 0 then
collectgarbage()
g_transform_pool:synchronize()
xlua.progress(i, #x)
end
end
g_transform_pool:synchronize()
torch.setnumthreads(nthread) -- revert
local new_data = {}
local perm = torch.randperm(#data)
for i = 1, perm:size(1) do
new_data[i] = data[perm[i]]
end
data = new_data
return data
end
local function validate(model, criterion, eval_metric, data, batch_size)
local psnr = 0
local loss = 0
local mse = 0
local loss_count = 0
local inputs_tmp = torch.Tensor(batch_size,
data[1].x:size(1),
data[1].x:size(2),
data[1].x:size(3)):zero()
local targets_tmp = torch.Tensor(batch_size,
data[1].y:size(1),
data[1].y:size(2),
data[1].y:size(3)):zero()
local inputs = inputs_tmp:clone():cuda()
local targets = targets_tmp:clone():cuda()
for t = 1, #data, batch_size do
if t + batch_size -1 > #data then
break
end
for i = 1, batch_size do
inputs_tmp[i]:copy(data[t + i - 1].x)
targets_tmp[i]:copy(data[t + i - 1].y)
end
inputs:copy(inputs_tmp)
targets:copy(targets_tmp)
local z = model:forward(inputs)
local batch_mse = eval_metric:forward(z, targets)
loss = loss + criterion:forward(z, targets)
mse = mse + batch_mse
psnr = psnr + (10 * math.log10(1 / (batch_mse + 1.0e-6)))
loss_count = loss_count + 1
if loss_count % 10 == 0 then
xlua.progress(t, #data)
collectgarbage()
end
end
xlua.progress(#data, #data)
return {loss = loss / loss_count, MSE = mse / loss_count, PSNR = psnr / loss_count}
end
local function create_criterion(model)
if settings.loss == "huber" then
if reconstruct.is_rgb(model) then
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(3, output_w * output_w)
weight[1]:fill(0.29891 * 3) -- R
weight[2]:fill(0.58661 * 3) -- G
weight[3]:fill(0.11448 * 3) -- B
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
else
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(1, output_w * output_w)
weight[1]:fill(1.0)
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
end
elseif settings.loss == "l1" then
return w2nn.L1Criterion():cuda()
elseif settings.loss == "mse" then
return w2nn.ClippedMSECriterion(0, 1.0):cuda()
elseif settings.loss == "bce" then
local bce = nn.BCECriterion()
bce.sizeAverage = true
return bce:cuda()
elseif settings.loss == "aux_bce" then
local aux = w2nn.AuxiliaryLossCriterion(nn.BCECriterion)
aux.sizeAverage = true
return aux:cuda()
elseif settings.loss == "aux_huber" then
local args = {}
if reconstruct.is_rgb(model) then
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(3, output_w * output_w)
weight[1]:fill(0.29891 * 3) -- R
weight[2]:fill(0.58661 * 3) -- G
weight[3]:fill(0.11448 * 3) -- B
args = {weight, 0.1, {0.0, 1.0}}
else
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(1, output_w * output_w)
weight[1]:fill(1.0)
args = {weight, 0.1, {0.0, 1.0}}
end
local aux = w2nn.AuxiliaryLossCriterion(w2nn.ClippedWeightedHuberCriterion, args)
return aux:cuda()
elseif settings.loss == "lbp" then
if reconstruct.is_rgb(model) then
return w2nn.LBPCriterion(3, 128):cuda()
else
return w2nn.LBPCriterion(1, 128):cuda()
end
elseif settings.loss == "lbp2" then
if reconstruct.is_rgb(model) then
return w2nn.LBPCriterion(3, 128, 3, 2):cuda()
else
return w2nn.LBPCriterion(1, 128, 3, 2):cuda()
end
elseif settings.loss == "aux_lbp" then
if reconstruct.is_rgb(model) then
return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {3, 128}):cuda()
else
return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {1, 128}):cuda()
end
elseif settings.loss == "aux_lbp2" then
if reconstruct.is_rgb(model) then
return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {3, 128, 3, 2}):cuda()
else
return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {1, 128, 3, 2}):cuda()
end
else
error("unsupported loss .." .. settings.loss)
end
end
local function resampling(x, y, train_x)
local c = 1
local shuffle = torch.randperm(#train_x)
local nthread = torch.getnumthreads()
if (settings.thread > 0) then
nthread = settings.thread
end
torch.setnumthreads(1) -- 1
for t = 1, #train_x do
local input = train_x[shuffle[t]]
g_transform_pool:addjob(
function()
local xy = transformer(input, false, settings.patches)
return xy
end,
function(xy)
for i = 1, #xy do
if c <= x:size(1) then
x[c]:copy(xy[i][1])
y[c]:copy(xy[i][2])
c = c + 1
else
break
end
end
end
)
if t % 50 == 0 then
collectgarbage()
g_transform_pool:synchronize()
xlua.progress(t, #train_x)
end
if c > x:size(1) then
break
end
end
g_transform_pool:synchronize()
xlua.progress(#train_x, #train_x)
torch.setnumthreads(nthread) -- revert
end
local function get_oracle_data(x, y, instance_loss, k, samples)
local index = torch.LongTensor(instance_loss:size(1))
local dummy = torch.Tensor(instance_loss:size(1))
torch.topk(dummy, index, instance_loss, k, 1, true)
print("MSE of all data: " ..instance_loss:mean() .. ", MSE of oracle data: " .. dummy:mean())
local shuffle = torch.randperm(k)
local x_s = x:size()
local y_s = y:size()
x_s[1] = samples
y_s[1] = samples
local oracle_x = torch.Tensor(table.unpack(torch.totable(x_s)))
local oracle_y = torch.Tensor(table.unpack(torch.totable(y_s)))
for i = 1, samples do
oracle_x[i]:copy(x[index[shuffle[i]]])
oracle_y[i]:copy(y[index[shuffle[i]]])
end
return oracle_x, oracle_y
end
local function remove_small_image(x)
local compression = require 'compression'
local new_x = {}
for i = 1, #x do
local xe, meta, x_s
xe = x[i]
if type(x) == "table" and type(x[2]) == "table" then
if xe[1].x and xe[1].y then
x_s = compression.size(xe[1].y) -- y size
else
x_s = compression.size(xe[1])
end
else
x_s = compression.size(xe)
end
if x_s[2] / settings.scale > settings.crop_size + 32 and
x_s[3] / settings.scale > settings.crop_size + 32 then
table.insert(new_x, x[i])
end
if i % 100 == 0 then
collectgarbage()
end
end
print(string.format("%d small images are removed", #x - #new_x))
return new_x
end
local function plot(train, valid)
gnuplot.plot({
{'training', torch.Tensor(train), '-'},
{'validation', torch.Tensor(valid), '-'}})
end
local function train()
local x = torch.load(settings.images)
if settings.method ~= "user" then
x = remove_small_image(x)
end
local train_x, valid_x = split_data(x, math.max(math.floor(settings.validation_rate * #x), 1))
local hist_train = {}
local hist_valid = {}
local adam_config = {
xLearningRate = settings.learning_rate,
xBatchSize = settings.batch_size,
xLearningRateDecay = settings.learning_rate_decay,
xInstanceLoss = (settings.oracle_rate > 0)
}
local model
if settings.resume:len() > 0 then
model = w2nn.load_model(settings.resume, settings.backend == "cudnn", "ascii")
adam_config.xEvalCount = math.floor((#train_x * settings.patches) / settings.batch_size) * settings.batch_size * settings.inner_epoch * (settings.resume_epoch - 1)
print(string.format("set eval count = %d", adam_config.xEvalCount))
if adam_config.xEvalCount > 0 then
adam_config.learningRate = adam_config.xLearningRate / (1 + adam_config.xEvalCount * adam_config.xLearningRateDecay)
print(string.format("set learning rate = %E", adam_config.learningRate))
else
adam_config.xEvalCount = 0
adam_config.learningRate = adam_config.xLearningRate
end
else
if stringx.endswith(settings.model, ".lua") then
local create_model = dofile(settings.model)
model = create_model(srcnn, settings)
else
model = srcnn.create(settings.model, settings.backend, settings.color)
end
end
if model.w2nn_input_size then
if settings.crop_size ~= model.w2nn_input_size then
io.stderr:write(string.format("warning: crop_size is replaced with %d\n",
model.w2nn_input_size))
settings.crop_size = model.w2nn_input_size
end
end
if model.w2nn_gcn then
settings.gcn = true
else
settings.gcn = false
end
dir.makepath(settings.model_dir)
local offset = reconstruct.offset_size(model)
transform_pool_init(reconstruct.has_resize(model), offset)
local criterion = create_criterion(model)
local eval_metric = nil
if settings.loss:find("aux_") ~= nil then
eval_metric = w2nn.AuxiliaryLossCriterion(w2nn.ClippedMSECriterion):cuda()
else
eval_metric = w2nn.ClippedMSECriterion():cuda()
end
local ch = nil
if settings.color == "y" then
ch = 1
elseif settings.color == "rgb" then
ch = 3
end
local best_score = 1000.0
print("# make validation-set")
local valid_xy = make_validation_set(valid_x,
settings.validation_crops,
settings.patches)
valid_x = nil
collectgarbage()
model:cuda()
print("load .. " .. #train_x)
local x = nil
local y = torch.Tensor(settings.patches * #train_x,
ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()
if reconstruct.has_resize(model) then
x = torch.Tensor(settings.patches * #train_x,
ch, settings.crop_size / settings.scale, settings.crop_size / settings.scale)
else
x = torch.Tensor(settings.patches * #train_x,
ch, settings.crop_size, settings.crop_size)
end
local instance_loss = nil
local pmodel = w2nn.data_parallel(model, settings.gpu)
for epoch = settings.resume_epoch, settings.epoch do
pmodel:training()
print("# " .. epoch)
if adam_config.learningRate then
print("learning rate: " .. adam_config.learningRate)
end
print("## resampling")
if instance_loss then
-- active learning
local oracle_k = math.min(x:size(1) * (settings.oracle_rate * (1 / (1 - settings.oracle_drop_rate))), x:size(1))
local oracle_n = math.min(x:size(1) * settings.oracle_rate, x:size(1))
if oracle_n > 0 then
local oracle_x, oracle_y = get_oracle_data(x, y, instance_loss, oracle_k, oracle_n)
resampling(x:narrow(1, oracle_x:size(1) + 1, x:size(1)-oracle_x:size(1)),
y:narrow(1, oracle_x:size(1) + 1, x:size(1) - oracle_x:size(1)), train_x)
x:narrow(1, 1, oracle_x:size(1)):copy(oracle_x)
y:narrow(1, 1, oracle_y:size(1)):copy(oracle_y)
local draw_n = math.floor(math.sqrt(oracle_x:size(1), 0.5))
if draw_n > 100 then
draw_n = 100
end
image.save(path.join(settings.model_dir, "oracle_x.png"),
image.toDisplayTensor({
input = oracle_x:narrow(1, 1, draw_n * draw_n),
padding = 2,
nrow = draw_n,
min = 0,
max = 1}))
else
resampling(x, y, train_x)
end
else
resampling(x, y, train_x, pairwise_func)
end
collectgarbage()
instance_loss = torch.Tensor(x:size(1)):zero()
for i = 1, settings.inner_epoch do
pmodel:training()
local train_score, il = minibatch_adam(pmodel, criterion, eval_metric, x, y, adam_config)
instance_loss:copy(il)
print(train_score)
pmodel:evaluate()
print("# validation")
local score = validate(pmodel, criterion, eval_metric, valid_xy, adam_config.xBatchSize)
table.insert(hist_train, train_score.loss)
table.insert(hist_valid, score.loss)
if settings.plot then
plot(hist_train, hist_valid)
end
local score_for_update
if settings.update_criterion == "mse" then
score_for_update = score.MSE
else
score_for_update = score.loss
end
if score_for_update < best_score then
local test_image = image_loader.load_float(settings.test) -- reload
best_score = score_for_update
print("* model has updated")
if settings.save_history then
pmodel:clearState()
torch.save(settings.model_file_best, model, "ascii")
torch.save(string.format(settings.model_file, epoch, i), model, "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.%d-%d.png"):format(settings.noise_level,
epoch, i))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.%d-%d.png"):format(settings.scale,
epoch, i))
save_test_scale(model, test_image, log)
elseif settings.method == "noise_scale" then
local log = path.join(settings.model_dir,
("noise%d_scale%.1f_best.%d-%d.png"):format(settings.noise_level,
settings.scale,
epoch, i))
save_test_scale(model, test_image, log)
elseif settings.method == "user" then
local log = path.join(settings.model_dir,
("%s_best.%d-%d.png"):format(settings.name,
epoch, i))
save_test_user(model, test_image, log)
end
else
pmodel:clearState()
torch.save(settings.model_file, model, "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.png"):format(settings.noise_level))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.png"):format(settings.scale))
save_test_scale(model, test_image, log)
elseif settings.method == "noise_scale" then
local log = path.join(settings.model_dir,
("noise%d_scale%.1f_best.png"):format(settings.noise_level,
settings.scale))
save_test_scale(model, test_image, log)
elseif settings.method == "user" then
local log = path.join(settings.model_dir,
("%s_best.png"):format(settings.name))
save_test_user(model, test_image, log)
end
end
end
print("Batch-wise PSNR: " .. score.PSNR .. ", loss: " .. score.loss .. ", MSE: " .. score.MSE .. ", best: " .. best_score)
collectgarbage()
end
end
end
torch.manualSeed(settings.seed)
cutorch.manualSeed(settings.seed)
print(settings)
train()