forked from frigaut/yorick-yutils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgauss.i
280 lines (251 loc) · 8.83 KB
/
gauss.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/*
* gauss.i
*
* $Id: gauss.i,v 1.3 2008-10-29 15:54:21 paumard Exp $
*
* This file is part of Yutils
* Copyright (C) 2007 Thibaut Paumard <paumard@users.sourceforge.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* $Log: gauss.i,v $
* Revision 1.3 2008-10-29 15:54:21 paumard
* gauss.i: add gauss2d()
*
* Revision 1.2 2008/01/04 14:35:40 frigaut
* - changed path for require statement
*
* Revision 1.1 2008/01/04 13:47:48 frigaut
* initial import of thibaut's functions
*
*
*/
func gauss(x,a,&grad,deriv=)
/* DOCUMENT gauss(x,a)
Returns a gaussian:
I0*exp(-0.5*((x-x0)/dx)^2) [+a(4) [+a(5)*x]]
Where:
I0=a(1)
x0=a(2)
dx=a(3) (gaussian sigma)
Works with lmfit, and can return derivates.
Notes: FHWM=sigma*2*sqrt(2*alog(2)); sum(gauss)=I0*sigma*sqrt(2*pi)
SEE ALSO: gauss_fit, asgauss, asgauss_fit
*/
{
nterms=numberof(a);
eps=1e-100;
if (abs(a(3))<eps) a(3)=sign(a(3))*eps;
if (a(3)==0) u1=0; else u1=exp(-0.5*((x-a(2))/a(3))^2);
res=a(1)*u1;
if (deriv) {
grad=array(double,numberof(x),nterms);
grad(,1)=u1;
grad(,2)=res*(x-a(2))/a(3)^2;
grad(,3)=res*(x-a(2))^2/a(3)^3;
if (nterms>3) grad(,4)=1.;
if (nterms==5) grad(,5)=x;
}
if (nterms>3) res=res+a(4);
if (nterms==5) res=res+a(5)*x;
return res;
}
func asgauss(x,a,&grad,deriv=)
/* DOCUMENT asgauss(x,a)
Returns an assymetrical gaussian:
I0*exp(-((x-x0)/dx)^2) [+a(5) [+a(6)*x]]
Where:
I0=a(1)
x0=a(2)
dx=a(3) for x<x0 and dx=a(4) for x>=x0
Works with lmfit, and can return derivates.
SEE ALSO: gauss, gauss_fit, asgauss_fit
*/
{
nterms=numberof(a);
ta=(x<a(2));
tb=(x>=a(2));
u1=exp(-0.5*((x-a(2))*(ta/a(3)+tb/a(4)))^2);
res=a(1)*u1;
if (deriv) {
grad=array(double,numberof(x),nterms);
grad(,1)=u1;
grad(,2)=res*(x-a(2))*(ta/a(3)+tb/a(4))^2;
grad(,3)=res*(x-a(2))^2*(ta/a(3))^3;
grad(,4)=res*(x-a(2))^2*(tb/a(4))^3;
if (nterms>4) grad(,5)=1.; // useless
if (nterms==6) grad(,6)=x;
}
if (nterms>4) res=res+a(5);
if (nterms==6) res=res+a(6)*x;
return res;
}
func gauss_fit(y,x,w,guess=,nterms=,fit=,correl=,stdev=,gain=,tol=,deriv=,itmax=,lambda=,eps=,monte_carlo=) {
/* DOCUMENT gauss_fit(y,x,w,guess=,nterms=)
Fits a gaussian (see gauss) profile on a data set using lmfit (see lmfit).
The set of data points Y is the only mandatory argument, X defaults to
indgen(numberof(y)), weights W are optional (see lmfit). GAUSS_FIT tries
to guess a set of initial parameters, but you can (and should in every
non-trivial case) provide one using the GUESS keyword. In case you don't
provide a guess, you should set NTERMS to 3 (simple gaussian), 4 (adjust
constant baseline) or 5 (adjust linear baseline). The returned fitted
parameters have the same format as GUESS, see gauss.
SEE ALSO: gauss, asgauss, asgauss_fit
*/
require,"lmfit.i";
if (is_void(x)) x=indgen(numberof(y));
if (is_void(guess)) {
if (is_void(nterms)) nterms=3;
if (nterms<3) nterms=3;
if (nterms>5) nterms=5;
guess=array(double,nterms);
if (nterms==4) {
base=median(y);
guess(4)=base;
} else if (nterms==5) {
n=numberof(y);
y1=median(y(1:long(n/2)));
x1=median(x(1:long(n/2)));
y2=median(y(-long(n/2):0));
x2=median(x(-long(n/2):0));
guess(5)=(y2-y1)/(x2-x1);
if (guess(5)!=0) guess(4)=y1-guess(5)*x1;
base=guess(4)+guess(5)*x;
} else base=0.;
y2=y-base;
ind0=abs(y2)(mxx);
guess(2)=x(ind0);
guess(1)=y2(ind0);
if (y2(ind0)==guess(1)) yy=y2;
else yy=-y2;
ind1=ind0;
ind2=ind0;
while (ind1>1 && yy(ind1)>0.5*guess(1)) ind1--;
if (yy(ind1)<0.5*guess(1)) ind1++;
while (ind2<numberof(y)-1 && yy(ind2)>0.5*guess(1)) ind2++;
if (yy(ind2)<0.5*guess(1)) ind2--;
guess(3)=abs(x(ind2)-x(ind1))/sqrt(2.);
} else nterms=numberof(guess);
a=guess;
if (is_void(deriv)) deriv=1;
result=lmfit(gauss,x,a,y,w,deriv=deriv,fit=fit,correl=correl,stdev=stdev,
gain=gain,tol=tol,itmax=itmax,lambda=lambda,
eps=eps,monte_carlo=monte_carlo);
return a;
}
func asgauss_fit(y,x,w,guess=,nterms=){
/* DOCUMENT asgauss_fit(y,x,w,guess=,nterms=)
Fits an assymetrical gaussian (see asgauss) profile on a data set using
lmfit (see lmfit). The set of data points Y is the only mandatory
argument, X defaults to indgen(numberof(y)), weights W are optional (see
lmfit). ASGAUSS_FIT tries to guess a set of initial parameters, but you
can (and should in every non-trivial case) provide one using the GUESS
keyword. In case you don't provide a guess, you should set NTERMS to 6
(simple assymmetrical gaussian), 7 (adjust constant baseline) or 8 (adjust
linear baseline). The returned fitted parameters have the same format as
GUESS, see asgauss.
SEE ALSO: asgauss, gauss, gauss_fit
*/
require,"lmfit.i";
if (is_void(x)) x=indgen(numberof(y));
if (is_void(guess)) {
if (is_void(nterms)) nterms=4;
if (nterms<4) nterms=4;
if (nterms>6) nterms=6;
guess=array(double,nterms);
if (nterms==5) {
base=median(y);
guess(5)=base;
} else if (nterms==6) {
n=numberof(y);
y1=median(y(1:long(n/2)));
x1=median(x(1:long(n/2)));
y2=median(y(-long(n/2):0));
x2=median(x(-long(n/2):0));
guess(6)=(y2-y1)/(x2-x1);
if (guess(6)!=0) guess(5)=y1-guess(6)*x1;
base=guess(5)+guess(6)*x;
} else base=0.;
y2=y-base;
ind0=abs(y2)(mxx);
guess(2)=x(ind0);
guess(1)=y2(ind0);
if (y2(ind0)==guess(1)) yy=y2;
else yy=-y2;
ind1=ind0;
ind2=ind0;
while (ind1>1 && yy(ind1)>0.5*guess(1)) ind1--;
if (yy(ind1)<0.5*guess(1)) ind1++;
while (ind2<numberof(y)-1 && yy(ind2)>0.5*guess(1)) ind2++;
if (yy(ind2)<0.5*guess(1)) ind2--;
guess(3)=2*abs(x(ind0)-x(ind1));
guess(4)=2*abs(x(ind2)-x(ind0));
} else nterms=numberof(guess);
a=guess;
result=lmfit(asgauss,x,a,y,w,deriv=1);
return a;
}
func gauss2d(xy, a, &grad, deriv=) {
/* DOCUMENT gauss(xy,a)
Returns a 2D gaussian:
I0*exp(-0.5*(X^2+Y^2)) [+a(7) [+a(8)*x [+a(9)*y]]]
Where:
x=xy(..,1)
y=xy(..,2)
X=((x-x0)*cos(alpha)+(y-y0)*sin(alpha))/dx
Y=((y-y0)*cos(alpha)-(x-x0)*sin(alpha))/dy
I0=a(1)
x0=a(2)
y0=a(3)
dx=a(4) (gaussian sigma)
dy=a(5)
alpha=a(6)
Works with lmfit, and can return derivates.
Notes: FHWM=sigma*2*sqrt(2*alog(2)); sum(gauss2d)=2*pi*I0*dx*dy
astro_util1.i contains two variants of this function: gaussian and
gaussianRound. Those two functions do not provide derivatives and
take a slightly different A vector (e.g. alpha in degrees instead
of radians).
SEE ALSO: gauss, gauss_fit, gaussian, gaussianRound
*/
npars=numberof(a);
eps=1e-100;
if (abs(a(4))<eps) dx1=sign(a(4))/eps; else dx1=1./a(4);
if (npars>=5) {
if (abs(a(5))<eps) dy1=sign(a(5))/eps; else dy1=1./a(5);
} else dy1=dx1;
alpha=npars>=6?a(6):0.;
X=((deltax=(xy(..,1)-(x0=a(2))))*(cosa=cos(alpha))+
(deltay=(xy(..,2)-(y0=a(3))))*(sina=sin(alpha)))*dx1;
Y=(deltay*cosa-deltax*sina)*dy1;
u1=exp(-0.5*(r2=(X^2+Y^2)));
res=a(1)*u1;
if (numberof(a)>=7) res+=a(7);
if (numberof(a)>=8) res+=a(8)*xy(..,1);
if (numberof(a)>=9) res+=a(7)*xy(..,2);
if (deriv) {
grad=array(1.,dimsof(X),numberof(a));
grad(..,1)=u1;
grad(..,2)=((cosa*dx1)*X-(sina*dy1)*Y)*res;
grad(..,3)=((sina*dx1)*X+(cosa*dy1)*Y)*res;
grad(..,4)=dx1*X^2*res;
if (numberof(a)>=5) grad(..,5)=dy1*Y^2*res; else grad(..,4)+=dy1*Y^2*res;
if (numberof(a)>=6) grad(..,6)=X*Y*(dy1/dx1-dx1/dy1)*res;//<==
//if (numberof(a)>=7) grad(..,7)=1.;
if (numberof(a)>=8) grad(..,8)=xy(..,1);
if (numberof(a)>=9) grad(..,9)=xy(..,2);
}
return res;
}