forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yaml
25 lines (25 loc) · 1.02 KB
/
metafile.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Models:
- Name: mae-base_upernet_8xb2-amp-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.13
mIoU(ms+flip): 48.7
Config: configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- ViT-B
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 9.96
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json
Paper:
Title: Masked Autoencoders Are Scalable Vision Learners
URL: https://arxiv.org/abs/2111.06377
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.24.0/mmseg/models/backbones/mae.py#L46
Framework: PyTorch