Skip to content

Latest commit

 

History

History
101 lines (74 loc) · 14.1 KB

File metadata and controls

101 lines (74 loc) · 14.1 KB

SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Introduction

Official Repo

Code Snippet

Abstract

We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding, thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from different layers, and thus combining both local attention and global attention to render powerful representations. We show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters, being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C. Code will be released at: this http URL.

Usage

To use other repositories' pre-trained models, it is necessary to convert keys.

We provide a script mit2mmseg.py in the tools directory to convert the key of models from the official repo to MMSegmentation style.

python tools/model_converters/mit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}

This script convert model from PRETRAIN_PATH and store the converted model in STORE_PATH.

Results and models

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) Device mIoU mIoU(ms+flip) config download
Segformer MIT-B0 512x512 160000 2.1 51.32 1080 Ti 37.41 38.34 config model | log
Segformer MIT-B1 512x512 160000 2.6 47.66 TITAN Xp 40.97 42.54 config model | log
Segformer MIT-B2 512x512 160000 3.6 30.88 TITAN Xp 45.58 47.03 config model | log
Segformer MIT-B3 512x512 160000 4.8 22.11 V100 47.82 48.81 config model | log
Segformer MIT-B4 512x512 160000 6.1 15.45 V100 48.46 49.76 config model | log
Segformer MIT-B5 512x512 160000 7.2 11.89 V100 49.13 50.22 config model | log
Segformer MIT-B5 640x640 160000 11.5 11.30 V100 49.62 50.36 config model | log

Evaluation with AlignedResize:

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip)
Segformer MIT-B0 512x512 160000 38.1 38.57
Segformer MIT-B1 512x512 160000 41.64 42.76
Segformer MIT-B2 512x512 160000 46.53 47.49
Segformer MIT-B3 512x512 160000 48.46 49.14
Segformer MIT-B4 512x512 160000 49.34 50.29
Segformer MIT-B5 512x512 160000 50.08 50.72
Segformer MIT-B5 640x640 160000 50.58 50.8

We replace AlignedResize in original implementatiuon to Resize + ResizeToMultiple. If you want to test by using AlignedResize, you can change the dataset pipeline like this:

test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=(2048, 512), keep_ratio=True),
    # resize image to multiple of 32, improve SegFormer by 0.5-1.0 mIoU.
    dict(type='ResizeToMultiple', size_divisor=32),
    # add loading annotation after ``Resize`` because ground truth
    # does not need to do resize data transform
    dict(type='LoadAnnotations', reduce_zero_label=True),
    dict(type='PackSegInputs')
]

Cityscapes

The lower fps result is caused by the sliding window inference scheme (window size:1024x1024).

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) Device mIoU mIoU(ms+flip) config download
Segformer MIT-B0 1024x1024 160000 3.64 4.74 V100 76.54 78.22 config model | log
Segformer MIT-B1 1024x1024 160000 4.49 4.3 V100 78.56 79.73 config model | log
Segformer MIT-B2 1024x1024 160000 7.42 3.36 V100 81.08 82.18 config model | log
Segformer MIT-B3 1024x1024 160000 10.86 2.53 V100 81.94 83.14 config model | log
Segformer MIT-B4 1024x1024 160000 15.07 1.88 V100 81.89 83.38 config model | log
Segformer MIT-B5 1024x1024 160000 18.00 1.39 V100 82.25 83.48 config model | log

Citation

@article{xie2021segformer,
  title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
  author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
  journal={arXiv preprint arXiv:2105.15203},
  year={2021}
}