-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.tex
54 lines (42 loc) · 9.5 KB
/
test.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
\chapter{Derivation and proof for the hierarchical Pitman-Yor process language model with added interpolation factors and backoff strategies}\label{apx:proofinterpolform}
In the original paper by Teh,\autocite{teh2006hierarchical} the functions\footnote{Ibidem, Equations 10 and 11.} that return the word probability are defined as:
\begin{equation}
\begin{split}
p(w | 0, \mathcal{S}, \Theta) =& 1/V \\
p(w | \mathbf{u}, \mathcal{S}, \Theta) =& \frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)
\end{split}
\end{equation}
With each extension to these formulae, we have to proof that the result is a proper probability distribution again.\footnote{Non-normalised language models are also use, i.e.\ Stupid Backoff \autocite{brants2007large}.}
Since these formulae will serve as the basis for our \textsl{limited} backoff strategy, we show its correctness. A step we also have to show for our derivation.
We show its correctness by showing that the probability distribution sums up to one (and that it is not negative, and the elements are not bigger than 1).
Assume there is a dictionary $W$ with $V$ words. Then we can sum over all customers in each restaurant, for all dishes with $\sum_{w\in W} c_{\mathbf{u}w} = c_{\mathbf{u}\cdot\cdot}$, and similarly for the tables: $\sum_{w\in W} t_{\mathbf{u}w\cdot} = t_{\mathbf{u}\cdot\cdot}$.
\begin{equation}
\begin{split}
\sum_{w\in W} p(w | \mathbf{u}, \mathcal{S}, \Theta) = 1 \\
\sum_{w\in W}\frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta) = 1 \\
\sum_{w\in W}\frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in W} \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta) =1 \\
\sum_{w\in W} \frac{c_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \sum_{w\in W} \frac{d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in W} \frac{\theta_{|\mathbf{u}|}p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in W} \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \theta_{|\mathbf{u}|}\sum_{w\in W} \frac{p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}\sum_{w\in W} \frac{ p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} +\frac{ \theta_{|\mathbf{u}|}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{ d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}- d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = 1
\end{split}
\end{equation}
For the limited backoff method we distinguish between the word probability, and the backoff probability and its weight. If a pattern $\mathbf{u}w$ occurs in the training data, we only use the word probability, and otherwise we use the word probability with its weighted backoff probability.
Assume that we have a context pattern $\mathbf{u}$, and a vocabulary of $V$ words, of which $N$ words $w$ occur in the training data as $\mathbf{u}w$. $B$ of the $V$ words do not occur, hence $V = N + B$\marginnote{Read $B$ as backoff when this pattern occurs, and $N$ as no backoff}.
If we naively ignore the backoff probability in the $N$ cases, then the probability distribution does not sum up to one anymore.
In the following example we show that our extension is a proper distribution. Let's call the words that we don't backoff for $\mathcal{N}$, and the other words $\mathcal{B}$. In the proof we will skip over the steps that are already in the previous example.
Note that we can compute $\sum_{w\in\mathcal{B}} p(w|\pi(\mathbf{u}), \mathcal{S}, \Theta) = P$, and that this does not sum up to one. So we add a term $Q = 1 - P$.
\begin{equation}
\begin{split}
\sum_{w\in W} p(w | \mathbf{u}, \mathcal{S}, \Theta) = 1 \\
\sum_{w\in\mathcal{N}} p(w | \mathbf{u}, \mathcal{S}, \Theta) + \sum_{w\in\mathcal{B}} p(w | \mathbf{u}, \mathcal{S}, \Theta) = 1 \\
\sum_{w\in\mathcal{N}}\frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} q + \sum_{w\in\mathcal{B}}\frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta) = 1 \\
\frac{\sum_{w\in\mathcal{N}}c_{\mathbf{u}w\cdot} + \sum_{w\in\mathcal{B}}c_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{\sum_{w\in\mathcal{N}}d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot} + \sum_{w\in\mathcal{B}}d_{|\mathbf{u}|}t_{\mathbf{u}w\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in\mathcal{N}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} q + \sum_{w\in\mathcal{B}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)= 1\\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in\mathcal{N}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} q + \sum_{w\in\mathcal{B}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)= 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in\mathcal{N}}\frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} q + \sum_{w\in\mathcal{N}}\frac{\theta_{|\mathbf{u}|}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} q + \sum_{w\in\mathcal{B}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)= 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \sum_{w\in\mathcal{B}}\frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)= 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \theta_{|\mathbf{u}|}\sum_{w\in\mathcal{B}}\frac{p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}\sum_{w\in\mathcal{B}}\frac{ p(w | \pi(\mathbf{u}), \mathcal{S}, \Theta)}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}}= 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} - \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|}Q}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|}P}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{ d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}P}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}}= 1 \\
\frac{c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{(-1+P+Q)d_{|\mathbf{u}|}t_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} + \frac{(P+Q)\theta_{|\mathbf{u}|}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = \frac{\theta_{|\mathbf{u}|} + c_{\mathbf{u}\cdot\cdot}}{\theta_{|\mathbf{u}|}+c_{\mathbf{u}\cdot\cdot}} = 1
\end{split}\label{app:der}
\end{equation}