-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
269 lines (198 loc) · 9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch import nn
from math import sqrt, log
from attention import *
class InputEmbedding(nn.Module):
def __init__(self, d_model: int, vocab_size: int):
super().__init__()
self. d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embedding(x) * sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float, seq_len: int ):
super().__init__()
self.d_model = d_model
self.dropout = dropout
self.seq_len = seq_len
#matrix of shape seq_len x d_model
pe = torch.zeros(seq_len, d_model )
position = torch.arrange(0, seq_len, dtype = torch.float).unsqueeze(1) ## Numerator term
div_term = torch.exp(torch.arrange(0, d_model, 2).float() * (-log(10000.0)/ d_model) ) #divisor term
#Applying the trig functions to calc pos vector
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
self.register_buffer('pe', pe )
def forward(self, x):
x = x + (self.pe[:, :x.shape[1]], : ).requires_grad_(False)
# Forward Pass
class FeedForward(nn.Module):
def __init__(self, d_model: int, d_ff: int , dropout: float) -> None:
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) #w1 & b1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) #w2 b2
def forward(self, x):
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float) ->None:
super().__init__()
self.d_model = d_model
self.h = h
assert d_model % h == 0, "d_model is not divisible by h"
#d_k = d_model / h
self.d_k = d_model // h
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout ):
d_k = query.shape[-1]
attention_scores = (query @ key.transpose[-2, -1]) / math.sqrt(d_k)
if mask is not None:
attention_scores.masked_fill_(mask == 0, -1e9)
attention_scores = attention_scores.softmax(dim = -1)
if dropout is not None:
attention_scores = dropout(attention_scores)
return (attention_scores @ value ) , attention_scores
def forward(self, q, k , v, mask):
query = self.w_q(q)
key = self.w_k(k)
value = self.w_v(v)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
key = key.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1,2)
value = value.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1,2)
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
# (batch, h , seq_len d_k) --->
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1 , self.h * self.d_k)
return self.w_o(x)
class ResidualConnection(nn.Module):
def __init__(self, dropout: float) -> None:
super().__init__()
self.dropout = dropout
self.norm = LayerNormalize()
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class LayerNormalize(nn.Module):
def __init__(self, eps: float = 10**-6):
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(1))
self.bias = nn.Parameter(torch.zeros(1))
def forward(self,x):
mean = x.mean(dim = -1 , keepDim =True)
std = x.std(dim=-1 , keepDim = True)
return self.alpha * (x-mean) / (std + self.eps) + self.bias
class EncoderBlock(nn.Module):
'''
Encoder
'''
def __init__(self, self_attention_block: MultiHeadAttentionBlock,
feed_forward: FeedForward, dropout: float) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward = feed_forward
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
def forward(self, x, src_mask ):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask))
x = self.residual_connections[1](x, self.feed_forward)
return x
class Encoder(nn.Module):
'''
Construct the encoder block
'''
def __init__(self, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalize()
def forward(self, x , mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
'''
Decoder Block
'''
def __init__(self, self_attention_block: MultiHeadAttentionBlock,
cross_attention_block: MultiHeadAttentionBlock,
feed_forward: FeedForward, dropout: float):
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward = feed_forward
self.residual_connections = nn.Module([ResidualConnection(dropout) for _ in range(3)])
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
x = self.residual_connections[2](x, self.feed_forward)
return x
class Decoder(nn.Module):
'''
Construct the decoder block
'''
def __init__(self, layers: nn.ModuleList):
super().__init__()
self.layers = layers
self.norm = LayerNormalize()
def forward(self, x, encoder_output, src_mask , tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
'''
Projection layer for final conversion of the output matrix to the seq len
'''
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.proj = nn.Linear(d_model, vocab_size)
def forward(self, x):
return torch.log_softmax(self.proj(x), dim = -1 )
### Building the transformer
class Transformer(nn.Module):
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbedding,
tgt_embed: InputEmbedding, src_pos: PositionalEncoding,
tgt_pos: PositionalEncoding, proj_layer: ProjectionLayer):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.proj = proj_layer
self.src_pos = src_pos
self.tgt_pos = tgt_pos
def encode(self, src, src_mask ):
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(self, encoder_output, src_mask, tgt, tgt_mask):
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decode(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
return self.proj_layer(x)
def build_transformer(src_vocab_size: int, tgt_vocab_size: int,
src_seq_len: int, tgt_seq_len: int, d_model: int,
N: int=6, h: int=8, dropout: float=0.1, d_ff: int=2048):
src_embed = InputEmbedding(d_model, src_vocab_size)
tgt_embed = InputEmbedding(d_model, tgt_vocab_size)
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
encoder_blocks = []
for _ in range(N):
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForward(d_model, d_ff, dropout)
encoder_block = EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout)
encoder_block.append(encoder_block)
decoder_blocks = []
for _ in range(N):
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForward(d_model, d_ff, dropout)
decoder_block = DecoderBlock(decoder_self_attention_block,
decoder_cross_attention_block,
feed_forward_block, dropout)
decoder_blocks.append(decoder_block)
encoder = Encoder(nn.ModuleList(encoder_blocks))
decoder = Decoder(nn.ModuleList(decoder_blocks))