-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_diversity.py
78 lines (63 loc) · 2.31 KB
/
run_diversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import llm
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import score_func as uncached_score_func
from lang import can_be_solution
from prompts import prompt, expansion_count, min_lines, check_func
from common import limit_depth, max_completion_depth
from common_diversity import select_diversely_with_scores
from common_interactive import diffprompt
from common_stats import stats
from common_cache import create_score_predicate, create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
score_predicate = create_score_predicate()
calls_to_generate = 0
def generate_complete(text, montecarlo, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None
global calls_to_generate
calls_to_generate += 1
prev = text
texts, features = llm.generate(text, 5, return_hiddens=True)
scores = [score_func(text) for text in texts]
text, score = select_diversely_with_scores(texts, scores, score_predicate, features, montecarlo)
print(diffprompt(prev, texts))
if score is not None:
if score < 0:
return None
else:
if can_be_solution(text, min_lines, check_func):
montecarlo.solution = text
return text
else:
return generate_complete(text, montecarlo, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node):
return
text = generate_complete(node.state, montecarlo)
if text is None:
node.update_win_value(-1)
else:
child = Node(text)
node.add_child(child)
child.update_win_value(1)
child.update_policy_value(1)
child = Node(node.state)
node.add_child(child)
child.update_policy_value(0.2)
def main(mins_timeout = None):
global calls_to_generate
calls_to_generate = 0
montecarlo = MonteCarlo(Node(prompt), mins_timeout)
montecarlo.global_features = None
montecarlo.child_finder = child_finder
montecarlo.simulate(expansion_count)
print("CHOSEN SOLUTION")
print(montecarlo.solution)
stats(montecarlo)
print('cache stats', cache_stats)
print('calls to generate', calls_to_generate)
return cache_stats
if __name__ == "__main__":
main()