-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_dpo_gen.py
126 lines (101 loc) · 3.22 KB
/
run_dpo_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from datasets import Dataset
import torch
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import score_func, can_be_solution
from prompts import prompt, sanity_check, expansion_count, min_lines, check_func
from common import limit_depth, max_completion_depth
import llm
gen_file = "./datasets/gen.jsonl"
n_success_goal = 1
failures = {}
successes = {}
def add(d, k, v):
if k not in d:
d[k] = [v]
else:
d[k].append(v)
def add_all(d, solution, montecarlo):
node = solution
while node.parent:
if node.parent.state != node.state:
add(d, node.parent.state, node.state)
node = node.parent
def gen():
for k,ss in successes.items():
if k not in failures:
continue
fs = failures[k]
for s in set(ss):
for f in set(fs):
nk = len(k)
cs = s[nk:]
cf = f[nk:]
e = {"prompt": k, "chosen": cs, "rejected": cf}
print("PROMPT")
print(k)
print("SUCCESS")
print(cs)
print("FAILURE")
print(cf)
yield e
def generate_complete(start, text, montecarlo, gens, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None
text = llm.generate(text, 1)[0]
score = score_func(text)
if score is not None:
if score < 0:
add(failures, start, text)
return None
else:
node = Node(text)
if can_be_solution(text, min_lines, check_func):
montecarlo.solution = node
return node
else:
return generate_complete(start, text, montecarlo, gens, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node):
return
child = generate_complete(node.state, node.state, montecarlo, [])
if child is None:
node.update_win_value(-1)
else:
node.add_child(child)
child.update_win_value(1)
child.update_policy_value(1)
retry_child = Node(node.state)
node.add_child(retry_child)
retry_child.update_policy_value(0.2)
def main_iter(prompt, pending):
montecarlo = MonteCarlo(Node(prompt))
montecarlo.child_finder = child_finder
montecarlo.simulate(expansion_count)
assert montecarlo.solution
if montecarlo.solution:
text = montecarlo.solution.state
print("CHOSEN SOLUTION")
print(text)
if pending:
check_code = pending[0]
pending = pending[1:]
score = score_func(text+"\n\n"+check_code)
else:
score = 1.0
if score is not None:
if score > 0:
add(successes, prompt, text)
add_all(successes, montecarlo.solution, montecarlo)
return True, text, pending
add(failures, prompt, text)
return False, text, pending
if __name__ == "__main__":
from common_check import main
main(main_iter, n_success_goal)
print('SUCCESSES')
print(successes)
print('FAILURES')
print(failures)
ds = Dataset.from_generator(gen)
ds.to_json(gen_file)