-
Notifications
You must be signed in to change notification settings - Fork 16
/
HLS_Tutorial.Rmd
797 lines (626 loc) · 27.8 KB
/
HLS_Tutorial.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
---
title: "Getting Started with Cloud-Native Harmonized Landsat Sentinel-2 (HLS) Data in R"
output:
html_document:
df_print: paged
fig_caption: yes
theme: paper
toc: yes
toc_depth: 2
toc_float: yes
pdf_document:
toc: yes
toc_depth: '2'
word_document:
toc: yes
toc_depth: '2'
theme: lumen
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(comment = NA)
knitr::opts_knit$set(root.dir = dirname(rprojroot::find_rstudio_root_file()))
```
------------------------------------------------------------------------
**This tutorial demonstrates how to work with the HLS Landsat (HLSL30.002) and Sentinel-2 (HLSS30.002) data products in R.**
The Harmonized Landsat Sentinel-2 [(HLS)](https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/harmonized-landsat-sentinel-2-hls-overview)
project is a NASA initiative aiming to produce a consistent, harmonized
surface reflectance product from the Operational Land Imager (OLI) aboard
the joint NASA/USGS Landsat 8 and Landsat 9 satellites and the Multi-Spectral
Instrument (MSI) aboard Europe’s Copernicus Sentinel-2A and Sentinel-2B
satellites. Using sets of algorithms, all the necessary radiometric, spectral,
geometric, and spatial corrections have been applied to make HLS into seamless
timeseries that are stackable and comparable.
The dense timeseries of HLS data presents unprecedented opportunities to
monitor and map land surface dynamics with exceptional spatial and temporal
detail. The enhanced resolution will provide value in numerous fields,
including:
- Land cover change detection
- Agricultural management and monitoring
- Disaster response and recovery
- Water resource management
- Vegetation phenology studies
By leveraging the higher temporal resolution of this dataset, researchers and
practitioners can gain a deeper understanding of complex environmental
processes and make more informed decisions.
NASA's Land Processes Distributed Active Archive Center (LP DAAC) archives
and distributes HLS products in NASA's Earthdata cloud where each file is
stored as Cloud Optimized GeoTIFFs (COG). The primary objective of this
tutorial is to show how to query and subset HLS data using the NASA CMR-STAC
application programming interface (API). Using cloud hosted publicly available
data from NASA's Earthdata Cloud, you are not restricted by the need to
download HLS data files for your research needs anymore. The CMR-STAC API
allows you to subset your desired data collection by region, time, and band
while Earthdata Cloud allows you to download or stream the desired data to your
workspace.
---
## Use Case Example
In this tutorial, we demonstrate how to process and analyze NDVI time series
data derived from HLS data over a region of interest (ROI). Using a case study,
we cover the following steps:
- **Calculate NDVI**: Learn how to compute the Normalized Difference Vegetation
Index (NDVI).
- **Quality Masking**: Apply quality masks to filter out low-quality data.
- **Visualization**: Visualize the NDVI data for better understanding and
interpretation.
- **Statistical Analysis**: Calculate and export statistics specific to your
ROI without downloading the source data files.
We use multiple agricultural fields in California’s Central Valley as an
example to illustrate how to interact with HLS data effectively.
### Products Used:
**1. Daily 30 meter (m) global HLS Sentinel-2 Multi-spectral Instrument Surface Reflectance - [HLSS30.002](https://doi.org/10.5067/HLS/HLSS30.002)**
**Science Dataset (SDS) layers:**
- B8A (NIR Narrow)
- B04 (Red)
- Fmask (Quality)
**2. Daily 30 meter (m) global HLS Landsat-8 and 9 OLI Surface Reflectance - [HLSL30.002](https://doi.org/10.5067/HLS/HLSL30.002)**
**Science Dataset (SDS) layers:**
- B05 (NIR)
- B04 (Red)
- Fmask (Quality)
## Topics Covered in This Tutorial
1. **Getting Started**\
1a. Load Required Libraries\
1b. Set Up the Working Directory\
2. **CMR-STAC API: Searching for Items**\
2a. Collection Query\
2b. Spatial Query Search Parameter\
2c. Temporal Query Search Parameter\
2d. Submit a Query for Our Search Criteria\
3. **Accessing and Interacting with HLS Data**\
3a. Subset by Band\
3b. Subset HLS COGs Spatially and Stack HLS Data Layers\
4. **Processing HLS Data**\
4a. Calculate NDVI\
4b. Apply Quality Filtering\
4c. Visualize Stacked Time Series\
4d. Export Statistics\
5. **Export Output to GeoTIFF**
## Prerequisites:
- This tutorial can be executed using R with RStudio or in Visual Studio Code
(VS Code).
- Tested on Windows using R Version 4.0.5 and RStudio version 1.2.5033.
- A [NASA Earthdata Login](https://urs.earthdata.nasa.gov/) account is
required to access the data used in this Tutorial. You can create an account
[here](https://urs.earthdata.nasa.gov/users/new).
## Procedures:
### Getting Started:
- [Clone](https://github.com/nasa/HLS-Data-Resources.git) or
[download](https://github.com/nasa/HLS-Data-Resources/archive/refs/heads/main.zip)
the HLS Data Resources Repository.
- When you open this Rmarkdown notebook in RStudio, you can click the little
green "Play" button in each grey code chunk to execute the code. The result
can be printed either in the R Console or inline in the RMarkdown notebook,
depending on your RStudio preferences.
### Environment Setup:
#### 1. Check the version of R by typing `version` into the console and RStudio by typing `RStudio.Version()` into the console and update them if needed.
- Windows
- Install and load installr:
- `install.packages("installr");library(installr)`\
- Copy/Update the existing packages to the new R installation:
- `updateR()`
- Open RStudio, go to Help \> Check for Updates to install newer
version of RStudio (if available).
- Mac
- Go to <https://cloud.r-project.org/bin/macosx/>.\
- Download the latest release (R-4.4.1.pkg) and finish the
installation.
- Open RStudio, go to Help \> Check for Updates to install newer
version of RStudio (if available).
- To update packages, go to Tools \> Check for Package Updates. If
updates are available, select All, and click Install Updates.
#### 2. Required packages
- `rmarkdown`
- `rstac`
- `terra`
- `imager`
- `leaflet`
- `dygraphs`
- `xts`
- `lubridate`
- `earthdatalogin`
Run the cell below to identify any missing packages to install, and then load
all of the required packages.
```{r, warning = FALSE, message = FALSE}
packages <- c('rmarkdown','earthdatalogin', 'rstac','imager','lubridate','xts','dygraphs','leaflet','terra')
# Identify missing (not installed) packages
new.packages = packages[!(packages %in% installed.packages()[,"Package"])]
# Install new (not installed) packages
if(length(new.packages)) install.packages(new.packages, repos='http://cran.rstudio.com/', dependencies = TRUE) else print('All required packages are installed.')
```
# 1. Getting Started
## 1a. Load Required Libraries
Next load all packages using `library()` function.
```{r, warning= FALSE, message=FALSE}
invisible(lapply(packages, library, character.only = TRUE))
```
## 1b. Set Up the Working Directory
Create an output directory for the results.
```{r}
# Create an output directory if it doesn't exist
outDir <- file.path("data", "R_Output", fsep="/")
suppressWarnings(dir.create(outDir))
```
## 1c. Set Up the Authentication.
The `earthdatalogin` sets up authentication using environmental variables.
```{r}
# Authentication is not used needed immediately, but it is good to set up in the beginning.
earthdatalogin::edl_netrc()
```
# 2. CMR-STAC API: Searching for Items
We will use the CMR-STAC API search endpoint to query the LPCLOUD catalog for
HLS data by ROI and time period of interest. In order to retrieve STAC Items
that match your criteria, you need to define your query parameters, which we
will walk through below.
To learn how to navigate through the structure of a CMR-STAC Catalog and
define Search parameters, see [Getting Started with NASA's CMR-STAC
API](https://git.earthdata.nasa.gov/projects/LPDUR/repos/data-discovery---cmr-stac-api/browse).
Information on the specifications for adding parameters to a search query can
be found [here](https://github.com/radiantearth/stac-api-spec/tree/master/item-search#query-parameters-and-fields).
For this tutorial, we will use the [rstac](https://brazil-data-cube.github.io/rstac/index.html)
library to interact with the CMR-STAC API.
Define the CMR-STAC endpoint, which we will connect to for our search.
```{r}
s = stac("https://cmr.earthdata.nasa.gov/stac/LPCLOUD/")
```
## 2a. Collection Query
We will need to assign the lists one or more Collection IDs we want to include
in the search query to a variable. Only STAC Items from the provided
Collections will be searched. Here, we are interested in both HLS **L30** (Landsata
8 and 9) and **S30** (Sentinel-2A and B) collections. To learn how to access
Collection IDs in CMR-STAC visit [Getting Started with NASA's CMR-STAC API](https://git.earthdata.nasa.gov/projects/LPDUR/repos/data-discovery---cmr-stac-api/browse).
```{r}
HLS_col <- list("HLSS30_2.0", "HLSL30_2.0")
```
## 2b. Spatial Query Search Parameter
We can assign our spatial region of interest by loading a GeoJSON file using the
`terra` package. An example GeoJSON file is supplied in the 'Data' directory of
the 'hls_tutorial_r' repository named `FieldBoundary.geojson`. Read the file in
and use it to perform the spatial subset.
```{r, results= "hide"}
roi <- terra::vect("data/Field_Boundary.geojson")
```
We will use the `leaflet` package to plot the agricultural fields boundary on
top of a ESRI world imagery basemap.
```{r}
leaflet() %>%
addPolygons(data = roi, fill = FALSE) %>%
addProviderTiles(providers$Esri.WorldImagery) %>%
addMiniMap(zoomLevelFixed = 5)
```
This map provides a visual representation of our study area. To perfor a
spatial search using the CMR-STAC we need to define the "bounding box" using
the lower left and upper right coordinates of our area of interest. The `terra`
package offers a convenient solution to get this information. Below, we'll
extract the extent of our input GeoJSON file and generate the necessary spatial
search parameters for precise data retrieval.
```{r}
roi_extent <- terra::ext(roi)
bbox <- c(roi_extent$xmin, roi_extent$ymin, roi_extent$xmax, roi_extent$ymax)
```
## 2c. Temporal Query Search Parameter
Next, we will need to define a temporal search query parameter. In our example,
we will set the time period of interest for two months of August and September 2021.
Note that the temporal ranges should be specified as a pair of date-time values
separated by comma (,) or forward slash (/). Each date-time value must have the
format of`YYYY-MM-DDTHH:MM:SSZ` (ISO 8601). Additional information on setting temporal
searches can be found in the [NASA CMR Documentation](https://cmr.earthdata.nasa.gov/search/site/docs/search/api.html#temporal-range-searches).
```{r}
roi_datetime <- '2021-08-01T00:00:00Z/2021-09-30T23:59:59Z' # YYYY-MM-DDTHH:MM:SSZ/YYYY-MM-DDTHH:MM:SSZ
```
## 2d. Submit a Query with Our Search Criteria
Now we are all prepared to submit a request to the CMR-STAC endpoint! We will
do this using the `rstac` package. The output will show all the available
data matching our search criteria based on our datetime and bounding box.
```{r}
items <- s %>%
stac_search(collections = HLS_col,
bbox = bbox,
datetime = roi_datetime,
limit = 100) %>%
post_request()
print(items)
```
Each item returned is a `FeatureCollection`. We can explore an example of what
is in a feature by selecting the first one.
```{r}
View(items$features[[1]])
```
We can also view the assets of each item in the response, to see what data
(bands) can be accessed.
```{r}
assets <- items_assets(items)
print(assets)
```
Working with the first feature, we can extract the browse image URL and plot it.
```{r}
browse_image_url <- items$features[[1]]$assets$browse$href
browse <-load.image(browse_image_url)
plot(browse)
```
Our first view of NASA data from the cloud.
# 3. Accessing and Interacting with HLS Data
This section will demonstrate how to simplify interacting with our search results,
filter based on cloud cover, select assets (bands), stream the data to memory,
subset by our region of interest, and create a time-series of NDVI.
To make this data easier to work with, we can start to place the information
into a spatial dataframe using the use the `items_as_sf()` function.
```{r}
sf_items <- items_as_sf(items)
View(sf_items)
```
More information can be added to the spatial dataframe by pulling information
from each feature using `sapply` to extract the properties of each feature, then
binding it to our spatial dataframe.
```{r}
# Retrieve Granule ID for each feature
granule_id <- sapply(items$features, function(feature) feature$id)
# Add as first column in sf_items
sf_items <- cbind(granule = granule_id, sf_items)
View(sf_items)
```
## 3a. Select Bands and Filter by Cloud Cover
We can also retrieve the asset URLs for the bands we are interested in. In this
case, our goal is to build an NDVI timeseries from the NIR and Red bands. We
will also want the quality and Fmask layers. The band number is different for
NIR between the HLSL30 and HLSS30 products. Below you can find the band numbers
we want to retrieve for each of the two products.
- HLSS30 (Sentinel 2):
- "narrow" NIR = B8A
- Red = B04
- Quality = Fmask
- HLSL30 (Landsat):
- NIR = B05
- Red = B04
- Quality = Fmask
Additional information on HLS band allocations can be found [here](https://lpdaac.usgs.gov/documents/1118/HLS_User_Guide_V2.pdf).
Let's define a function to retrieve the URL for each of these bands and add
them as columns to the dataframe. Afterwards, run it.
```{r}
# Define a function to extract asset urls for selected bands
# # This also includes a check to ensure the correct bands are extracted
# # # depending on the collection (HLSL30 or HLSS30)
extract_asset_urls <- function(feature) {
collection_id <- feature$collection
if (collection_id == "HLSS30_2.0") {
bands = c('B8A','B04','Fmask')
} else if (collection_id == "HLSL30_2.0") {
bands = c('B05','B04','Fmask')}
sapply(bands, function(band) feature$assets[[band]]$href)
}
# Retrieve Asset URLs for each feature using our extract_asset_urls function and transpose them to columns
asset_urls <- t(sapply(items$features, extract_asset_urls))
View(asset_urls)
```
Notice that our function has returned a table of each asset, but that the name
for the NIR is B8A. This is because Sentinel was the first item in the search
results. We'll want to rename these for clarity as we add them to the spatial
dataframe.
```{r}
colnames(asset_urls) <- c('nir', 'red', 'fmask')
sf_items <- cbind(sf_items, asset_urls)
View(sf_items)
```
The 'eo:cloud_cover' column contains a percentage cloud-cover of a scene, which we can use
to filter our results. We'll filter out any scenes with more than 30% cloud cover.
```{r}
# Filter based on cloud cover
sf_items <- sf_items[sf_items$eo.cloud_cover < 30,]
# Reset Row Indices
row.names(sf_items) <- NULL
View(sf_items)
```
## 3b. Subset HLS COGs Spatially and Stack HLS Data Layers
First, set up rgdal configurations to access the cloud assets that we are
interested in. You can learn more about these configuration options [here](https://trac.osgeo.org/gdal/wiki/ConfigOptions).
```{r, results= "hide"}
setGDALconfig("GDAL_HTTP_UNSAFESSL", value = "YES")
setGDALconfig("GDAL_HTTP_COOKIEFILE", value = ".rcookies")
setGDALconfig("GDAL_HTTP_COOKIEJAR", value = ".rcookies")
setGDALconfig("GDAL_DISABLE_READDIR_ON_OPEN", value = "EMPTY_DIR")
setGDALconfig("CPL_VSIL_CURL_ALLOWED_EXTENSIONS", value = "TIF")
```
Next, we define a function to open an HLS COG file from Earthdata Cloud and
crop it to our region of interest. During the cropping phase we want to be sure
to reproject our region of interest to match the CRS of the HLS data.
**One important thing to note about HLS data is that some scenes have the scale
factor for bands located in the wrong section of the metadata. This means that
the scale factor is not applied to the data when it is read by `terra::rast`.
To correct this we will check the metadata for the scale factor and apply it if
necessary.**
```{r}
# This function reads an HLS scene from a URL, applies the scale factor if necessary, and optionally crops and
# masks the scene based on a polygon. It requries the above GDAL configurations and a .netrc file. A .netrc
# can be created by running `earthdatalogin::edl_netrc()`.
open_hls <- function(url, roi = NULL) {
# Add VSICURL prefix
url <- paste0('/vsicurl/', url)
# Retrieve metadata
meta <- describe(url)
# Check if dataset is Quality Layer (Fmask) - no scaling this asset (int8 datatype)
is_fmask <- any(grep("Fmask", meta))
# Check if Scale is present in band metadata
will_autoscale <- any(grep("Scale:", meta))
# Read the raster
r <- rast(url)
# Apply Scale Factor if necessary
if (!will_autoscale && !is_fmask){
print(paste("No scale factor found in band metadata. Applying scale factor of 0.0001 to", basename(url)))
r <- r * 0.0001
}
# Crop if roi specified
if (!is.null(roi)){
# Reproject roi to match crs of r
roi_reproj <- project(roi, crs(r))
r <- mask(crop(r, roi_reproj), roi_reproj)
}
return(r)
}
```
Let's test this function on the first red band in our spatial dataframe and
plot the results.
```{r}
# Test opening and crop
red <- open_hls(sf_items$red[1], roi)
plot(red)
```
We can apply this function to all of the red, nir, and fmask scenes in our
spatial dataframe, using `lapply` to place the results in a list. This cell may
take some time depending on internet speed, as we're loading 72 scenes from the
cloud and cropping them.
```{r}
red_stack <- lapply(sf_items$red, open_hls, roi = roi)
nir_stack <- lapply(sf_items$nir, open_hls, roi = roi)
fmask_stack <- lapply(sf_items$fmask, open_hls, roi = roi)
```
------------------------------------------------------------------------
# 4. Processing HLS Data
Now we can start asking our science questions. First we define the NDVI
function and then execute it on the data loaded into memory. After that, we can
perform quality filtering to screen out any poor-quality observations.
## 4a. Calculate NDVI
Create a function to calculate NDVI.
```{r}
calculate_NDVI <- function(nir, red){
ndvi <- (nir-red)/(nir+red)
return(ndvi)
}
```
Now we can calculate NDVI from the list of red and nir rasters.
**Note that we get a warning about the CRS. This is because HLS-Landsat and
HLS-Sentinel have slightly different WKT strings that define their projections.
This is a known issue with HLS data. Although we get a warning here, the CRS is
the same.**
```{r}
# Calculate NDVI For All of our Scenes
ndvi_stack <- mapply(calculate_NDVI, nir_stack, red_stack, SIMPLIFY = FALSE)
# Rename the Scenes in our List
names(ndvi_stack) <- sf_items$datetime
# Create a single Rast Object from our list
ndvi_stacks <- terra::rast(ndvi_stack)
```
Now we plot! Let's start with the first item in NDVI time series.
```{r, warning=FALSE, message=FALSE}
# Create a color palette
pal <- colorNumeric(terrain.colors(n = 100), c(0,1) ,na.color = "transparent", reverse = TRUE)
leaflet() %>%
addProviderTiles(providers$Esri.WorldImagery) %>%
addRasterImage(ndvi_stacks[[1]], color = pal, opacity = 1) %>%
addPolygons(data = roi, fill = FALSE) %>%
addMiniMap(zoomLevelFixed = 5) %>%
leaflet::addLegend(pal = pal, values = c(0,1), title = "NDVI")
```
If you get an from this chunk, please update to the latest version of `leaflet`.
------------------------------------------------------------------------
## 4b. Quality Filtering
For HLS v2.0 products, all quality information is included in the Fmask layer.
This layer includes values corresponding to combinations of bits that represent
different quality descriptions at each location within the scene.
Bits are ordered `76543210` and correspond to the following quality descriptions:
|Bit Number|Mask Name|Bit Value|Description|
|----------|---------|---------|-----------|
| 7-6 | Aerosol | 11 | High |
| | Level | 10 | Medium |
| | | 01 | Low |
| | | 00 | Clear |
|----------|---------|---------|-----------|
| 5 | Water | 1 | Yes |
| | | 0 | No |
|----------|---------|---------|-----------|
| 4 | Snow/ | 1 | Yes |
| | Ice | 0 | No |
|----------|---------|---------|-----------|
| 3 | Cloud | 1 | Yes |
| | Shadow | 0 | No |
|----------|---------|---------|-----------|
| 2 | Cloud/ | 1 | Yes |
| | Shadow | 0 | No |
| | Adjacent| | |
|----------|---------|---------|-----------|
| 1 | Cloud | 1 | Yes |
| | | 0 | No |
|----------|---------|---------|-----------|
| 0 | Cirrus |Reserved | NA |
|----------|---------|---------|-----------|
Open an fmask layer and plot it to see examples of the quality values.
```{r}
# Test fmask
fmask <- fmask_stack[[23]]
plot(fmask)
```
We can select select the bits we want to mask from our analysis. In this case,
we will mask pixels identified as clouds, cloud/shadow adjacent, cloud shadow,
snow/ice, and water. We will ignore the aerosol levels. Create a list of those
bit numbers:
```{r}
selected_bit_nums <- c(1,2,3,4,5)
```
Now we can build a function to create a binary mask layer from the Fmask
layers. This function does a couple things:
1. Read the Fmask layer
2. Creates and empty mask Layer
3. Applies a bitwise AND operation to determine if the fmask value has the
selected bit numbers number set when converted to binary.
4. If so, the mask value is set to 1, then the mask is updated using a bitwise
OR operation to update the layer for each selected bit as we loop through the
selected bit numbers.
5. Lastly, it returns the new mask layer we can use to filter our data.
```{r}
# Filter based on quality
build_mask <- function(fmask, selected_bit_nums){
# Create a mask of all zeros
mask <- rast(fmask, vals=0)
for (b in selected_bit_nums){
# Apply Bitwise AND to fmask values and selected bit numbers
mask_temp <- app(fmask, function(x) bitwAnd(x, bitwShiftL(1,b)) >0)
# Update Mask to maintain only 1 layer with bitwise OR
mask <- mask | mask_temp
}
return(mask)
}
```
To see this in action, we can apply the function to an Fmask layer and plot the
results.
```{r}
qmask <- build_mask(fmask[[1]], selected_bit_nums)
plot(qmask)
```
Like we did before, we can apply this function to our Fmask stack to create a
list of masks.
```{r}
# Create List of Masks
qmask_stack <- lapply(fmask_stack, build_mask, selected_bit_nums=selected_bit_nums)
```
After creating a list of masks, we can apply them to our NDVI stack to filter
out the poor-quality pixels for each scene in the stack, making sure to update
the values masked values to `NA`.
```{r}
# Apply Mask to NDVI using NA Values
ndvi_masked <- mapply(function(x, y) {
mask(x, y, maskvalue = TRUE, updatevalue = NA)
}, ndvi_stack, qmask_stack, SIMPLIFY = FALSE)
```
Right now ndvi_masked is a list of `SpatRaster` objects. We can stack it using
the `rast` function to provide the expected format for the next steps.
```{r}
ndvi_masked <- rast(ndvi_masked)
```
Let's visualize a single layer of the masked NDVI to ensure our quality
filtering worked.
```{r}
plot(ndvi_masked[[23]])
```
We can see that some of the water present has been masked out of the NDVI layer,
which was part of our quality bit selection.
## 4c.Visualize Stacked Time Series
Now we can plot multiple layers to create an interactive NDVI time series map
with `leaflet`. Click on the dates on the left side to view the layer.
```{r}
# Create a leaflet map and add the base layer
map <- leaflet() %>%
addProviderTiles(providers$Esri.WorldImagery) %>%
addMiniMap(zoomLevelFixed = 5)
# Add each layer from our rasterstack
for (i in 1:nlyr(ndvi_masked)) {
map <- map %>%
addRasterImage(ndvi_masked[[i]], colors = pal, opacity = 1, group = names(ndvi_masked)[i])
}
# Add layer controls and legend
map <- map %>%
addLayersControl(baseGroups = names(ndvi_masked),
options = layersControlOptions(collapsed = FALSE), position = 'topleft') %>%
addLegend(pal = pal, values = c(0, 1), title = 'NDVI')
# Show map
map
```
Above, the time series show the changes in NDVI over the two months of September
and August 2021. The NDVI values over these agricultural fields are high and
stable and then they drastically decrease showing that they are cultivated
before the send of September.
## 4d. Calculating and Exporting Statistics
We can plot the time series NDVI values as boxplots showing their distribution
for our farm fields.
```{r}
# Add Date Only Column
sf_items$date <- sapply(sf_items$datetime, function(x) strsplit(x, "T")[[1]][1])
# Set Plot Margins and Font Sizes
par(mar = c(10, 6, 4, 2), cex.axis = 2, cex.lab = 2, cex.main = 2) # bottom, left, top, right
# Create Boxplot
terra::boxplot(ndvi_masked, col=c('olivedrab3'), main='NDVI Time Series', ylab='NDVI',
names = sf_items$date, las=2)
```
Next, calculate the statistics for each observation using built in statistics
functions from `terra`.
```{r}
ndvi_mean <- terra::global(ndvi_masked, 'mean', na.rm=TRUE)
ndvi_max <- terra::global(ndvi_masked, 'max', na.rm=TRUE)
ndvi_min <- terra::global(ndvi_masked, 'min', na.rm=TRUE)
ndvi_sd <- terra::global(ndvi_masked, 'sd', na.rm=TRUE)
```
With these stats, we can create an interactive plot using `dygraphs` library.
We will leverage the `lubridate` to convert our dates to a more usable format,
and the `xts` package to transform the dataframe to a format for `dygraph`.
```{r}
stats <- data.frame(
NDVI_Max = ndvi_max,
NDVI_Min = ndvi_min,
NDVI_mean = ndvi_mean,
NDVI_SD = ndvi_sd
)
stats$Date <- ymd_hms(sf_items$datetime) # convert string to date format (ISO 8601)
variables = xts(x=stats[,-5], order.by=stats$Date) # Choose the cols with the variables
dygraph(variables) %>%
dyAxis("y",label = "NDVI")
```
If you want to export these statistics, we can do so to a CSV file.
```{r}
stats_name <- file.path(outDir, "HLS_NDVI_Statistics.csv")
write.csv(stats,stats_name)
```
# 5. Export Output to GeoTIFF
Lastly, if you want to capture the final output files locally on your machine,
you can export them as GeoTIFFs.
```{r}
for (i in 1:nlyr(ndvi_masked)){
file_name <- paste0("HLS.", gsub("[:]",".", names(ndvi_masked[[i]])), ".NDVI.tif")
output_name <- file.path(outDir, file_name)
terra::writeRaster(ndvi_masked[[i]], output_name, overwrite = TRUE)
}
```
The raster stack object can also be written to the disk.
```{r, warning=FALSE}
output_name <- file.path(outDir, "HLS_NDVI_stack.tif")
terra::writeRaster(ndvi_masked, filename=output_name, overwrite=TRUE)
```
And we're done! You have successfully analyzed data in the cloud, exporting
just the information you needed for your area of interest rather than having to
download everything.
------------------------------------------------------------------------
### Contact Information
Contact: [LPDAAC\@usgs.gov](mailto:LPDAAC@usgs.gov){.email}
Voice: +1-866-573-3222
Organization: Land Processes Distributed Active Archive Center (LP DAAC)
Website: <https://lpdaac.usgs.gov/>
Date last modified: 09-17-2024
Work performed under USGS contract G0121D0001 for LP DAAC^1^.
^1^ LP DAAC Work performed under NASA contract NNG14HH33I.