-
Notifications
You must be signed in to change notification settings - Fork 3
/
jcarith.c
944 lines (840 loc) · 27.6 KB
/
jcarith.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/*
* jcarith.c
*
* Developed 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy encoding routines for JPEG
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Expanded entropy encoder object for arithmetic encoding. */
typedef struct {
struct jpeg_entropy_encoder pub; /* public fields */
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
INT32 a; /* A register, normalized size of coding interval */
INT32 sc; /* counter for stacked 0xFF values which might overflow */
INT32 zc; /* counter for pending 0x00 output values which might *
* be discarded at the end ("Pacman" termination) */
int ct; /* bit shift counter, determines when next byte will be written */
int buffer; /* buffer for most recent output byte != 0xFF */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
unsigned char * ac_stats[NUM_ARITH_TBLS];
/* Statistics bin for coding with fixed probability 0.5 */
unsigned char fixed_bin[4];
} arith_entropy_encoder;
typedef arith_entropy_encoder * arith_entropy_ptr;
/* The following two definitions specify the allocation chunk size
* for the statistics area.
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
*
* We use a compact representation with 1 byte per statistics bin,
* thus the numbers directly represent byte sizes.
* This 1 byte per statistics bin contains the meaning of the MPS
* (more probable symbol) in the highest bit (mask 0x80), and the
* index into the probability estimation state machine table
* in the lower bits (mask 0x7F).
*/
#define DC_STAT_BINS 64
#define AC_STAT_BINS 256
/* NOTE: Uncomment the following #define if you want to use the
* given formula for calculating the AC conditioning parameter Kx
* for spectral selection progressive coding in section G.1.3.2
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
* Although the spec and P&M authors claim that this "has proven
* to give good results for 8 bit precision samples", I'm not
* convinced yet that this is really beneficial.
* Early tests gave only very marginal compression enhancements
* (a few - around 5 or so - bytes even for very large files),
* which would turn out rather negative if we'd suppress the
* DAC (Define Arithmetic Conditioning) marker segments for
* the default parameters in the future.
* Note that currently the marker writing module emits 12-byte
* DAC segments for a full-component scan in a color image.
* This is not worth worrying about IMHO. However, since the
* spec defines the default values to be used if the tables
* are omitted (unlike Huffman tables, which are required
* anyway), one might optimize this behaviour in the future,
* and then it would be disadvantageous to use custom tables if
* they don't provide sufficient gain to exceed the DAC size.
*
* On the other hand, I'd consider it as a reasonable result
* that the conditioning has no significant influence on the
* compression performance. This means that the basic
* statistical model is already rather stable.
*
* Thus, at the moment, we use the default conditioning values
* anyway, and do not use the custom formula.
*
#define CALCULATE_SPECTRAL_CONDITIONING
*/
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
* We assume that int right shift is unsigned if INT32 right shift is,
* which should be safe.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS int ishift_temp;
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
LOCAL(void)
emit_byte (int val, j_compress_ptr cinfo)
/* Write next output byte; we do not support suspension in this module. */
{
struct jpeg_destination_mgr * dest = cinfo->dest;
*dest->next_output_byte++ = (JOCTET) val;
if (--dest->free_in_buffer == 0)
if (! (*dest->empty_output_buffer) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
/*
* Finish up at the end of an arithmetic-compressed scan.
*/
METHODDEF(void)
finish_pass (j_compress_ptr cinfo)
{
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
INT32 temp;
/* Section D.1.8: Termination of encoding */
/* Find the e->c in the coding interval with the largest
* number of trailing zero bits */
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
e->c = temp + 0x8000L;
else
e->c = temp;
/* Send remaining bytes to output */
e->c <<= e->ct;
if (e->c & 0xF8000000L) {
/* One final overflow has to be handled */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
} else {
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
}
/* Output final bytes only if they are not 0x00 */
if (e->c & 0x7FFF800L) {
if (e->zc) /* output final pending zero bytes */
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte((e->c >> 19) & 0xFF, cinfo);
if (((e->c >> 19) & 0xFF) == 0xFF)
emit_byte(0x00, cinfo);
if (e->c & 0x7F800L) {
emit_byte((e->c >> 11) & 0xFF, cinfo);
if (((e->c >> 11) & 0xFF) == 0xFF)
emit_byte(0x00, cinfo);
}
}
}
/*
* The core arithmetic encoding routine (common in JPEG and JBIG).
* This needs to go as fast as possible.
* Machine-dependent optimization facilities
* are not utilized in this portable implementation.
* However, this code should be fairly efficient and
* may be a good base for further optimizations anyway.
*
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
*
* Note: I've added full "Pacman" termination support to the
* byte output routines, which is equivalent to the optional
* Discard_final_zeros procedure (Figure D.15) in the spec.
* Thus, we always produce the shortest possible output
* stream compliant to the spec (no trailing zero bytes,
* except for FF stuffing).
*
* I've also introduced a new scheme for accessing
* the probability estimation state machine table,
* derived from Markus Kuhn's JBIG implementation.
*/
LOCAL(void)
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
{
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
register unsigned char nl, nm;
register INT32 qe, temp;
register int sv;
/* Fetch values from our compact representation of Table D.3(D.2):
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
e->a -= qe;
if (val != (sv >> 7)) {
/* Encode the less probable symbol */
if (e->a >= qe) {
/* If the interval size (qe) for the less probable symbol (LPS)
* is larger than the interval size for the MPS, then exchange
* the two symbols for coding efficiency, otherwise code the LPS
* as usual: */
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
} else {
/* Encode the more probable symbol */
if (e->a >= 0x8000L)
return; /* A >= 0x8000 -> ready, no renormalization required */
if (e->a < qe) {
/* If the interval size (qe) for the less probable symbol (LPS)
* is larger than the interval size for the MPS, then exchange
* the two symbols for coding efficiency: */
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
/* Renormalization & data output per section D.1.6 */
do {
e->a <<= 1;
e->c <<= 1;
if (--e->ct == 0) {
/* Another byte is ready for output */
temp = e->c >> 19;
if (temp > 0xFF) {
/* Handle overflow over all stacked 0xFF bytes */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
/* Note: The 3 spacer bits in the C register guarantee
* that the new buffer byte can't be 0xFF here
* (see page 160 in the P&M JPEG book). */
e->buffer = temp & 0xFF; /* new output byte, might overflow later */
} else if (temp == 0xFF) {
++e->sc; /* stack 0xFF byte (which might overflow later) */
} else {
/* Output all stacked 0xFF bytes, they will not overflow any more */
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
}
e->c &= 0x7FFFFL;
e->ct += 8;
}
} while (e->a < 0x8000L);
}
/*
* Emit a restart marker & resynchronize predictions.
*/
LOCAL(void)
emit_restart (j_compress_ptr cinfo, int restart_num)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci;
jpeg_component_info * compptr;
finish_pass(cinfo);
emit_byte(0xFF, cinfo);
emit_byte(JPEG_RST0 + restart_num, cinfo);
/* Re-initialize statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
/* Reset DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
/* AC needs no table when not present */
if (cinfo->Se) {
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
}
}
/* Reset arithmetic encoding variables */
entropy->c = 0;
entropy->a = 0x10000L;
entropy->sc = 0;
entropy->zc = 0;
entropy->ct = 11;
entropy->buffer = -1; /* empty */
}
/*
* MCU encoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
int blkn, ci, tbl;
int v, v2, m;
ISHIFT_TEMPS
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Compute the DC value after the required point transform by Al.
* This is simply an arithmetic right shift.
*/
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.4: Encode_DC_DIFF */
if ((v = m - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = m;
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
}
return TRUE;
}
/*
* MCU encoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke;
int v, v2, m;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data block */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
/* Establish EOB (end-of-block) index */
ke = cinfo->Se;
do {
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value.
*/
if ((v = (*block)[natural_order[ke]]) >= 0) {
if (v >>= cinfo->Al) break;
} else {
v = -v;
if (v >>= cinfo->Al) break;
}
} while (--ke);
/* Figure F.5: Encode_AC_Coefficients */
for (k = cinfo->Ss - 1; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[natural_order[++k]]) >= 0) {
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
break;
}
}
arith_encode(cinfo, st + 1, 0);
st += 3;
}
st += 2;
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Encode EOB decision only if k < cinfo->Se */
if (k < cinfo->Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
return TRUE;
}
/*
* MCU encoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
int Al, blkn;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
Al = cinfo->Al;
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
/* We simply emit the Al'th bit of the DC coefficient value. */
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
}
return TRUE;
}
/*
* MCU encoding for AC successive approximation refinement scan.
*/
METHODDEF(boolean)
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke, kex;
int v;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data block */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Section G.1.3.3: Encoding of AC coefficients */
/* Establish EOB (end-of-block) index */
ke = cinfo->Se;
do {
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value.
*/
if ((v = (*block)[natural_order[ke]]) >= 0) {
if (v >>= cinfo->Al) break;
} else {
v = -v;
if (v >>= cinfo->Al) break;
}
} while (--ke);
/* Establish EOBx (previous stage end-of-block) index */
for (kex = ke; kex > 0; kex--)
if ((v = (*block)[natural_order[kex]]) >= 0) {
if (v >>= cinfo->Ah) break;
} else {
v = -v;
if (v >>= cinfo->Ah) break;
}
/* Figure G.10: Encode_AC_Coefficients_SA */
for (k = cinfo->Ss - 1; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
if (k >= kex)
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[natural_order[++k]]) >= 0) {
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
}
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
}
break;
}
}
arith_encode(cinfo, st + 1, 0);
st += 3;
}
}
/* Encode EOB decision only if k < cinfo->Se */
if (k < cinfo->Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
return TRUE;
}
/*
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
*/
METHODDEF(boolean)
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke;
int v, v2, m;
int blkn, ci;
jpeg_component_info * compptr;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
tbl = compptr->dc_tbl_no;
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.4: Encode_DC_DIFF */
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = (*block)[0];
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
if ((ke = cinfo->lim_Se) == 0) continue;
tbl = compptr->ac_tbl_no;
/* Establish EOB (end-of-block) index */
do {
if ((*block)[natural_order[ke]]) break;
} while (--ke);
/* Figure F.5: Encode_AC_Coefficients */
for (k = 0; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 0); /* EOB decision */
while ((v = (*block)[natural_order[++k]]) == 0) {
arith_encode(cinfo, st + 1, 0);
st += 3;
}
arith_encode(cinfo, st + 1, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, entropy->fixed_bin, 0);
} else {
v = -v;
arith_encode(cinfo, entropy->fixed_bin, 1);
}
st += 2;
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Encode EOB decision only if k < cinfo->lim_Se */
if (k < cinfo->lim_Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
}
return TRUE;
}
/*
* Initialize for an arithmetic-compressed scan.
*/
METHODDEF(void)
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci, tbl;
jpeg_component_info * compptr;
if (gather_statistics)
/* Make sure to avoid that in the master control logic!
* We are fully adaptive here and need no extra
* statistics gathering pass!
*/
ERREXIT(cinfo, JERR_NOT_COMPILED);
/* We assume jcmaster.c already validated the progressive scan parameters. */
/* Select execution routines */
if (cinfo->progressive_mode) {
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_first;
else
entropy->pub.encode_mcu = encode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_refine;
else
entropy->pub.encode_mcu = encode_mcu_AC_refine;
}
} else
entropy->pub.encode_mcu = encode_mcu;
/* Allocate & initialize requested statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
/* AC needs no table when not present */
if (cinfo->Se) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
#ifdef CALCULATE_SPECTRAL_CONDITIONING
if (cinfo->progressive_mode)
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
#endif
}
}
/* Initialize arithmetic encoding variables */
entropy->c = 0;
entropy->a = 0x10000L;
entropy->sc = 0;
entropy->zc = 0;
entropy->ct = 11;
entropy->buffer = -1; /* empty */
/* Initialize restart stuff */
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num = 0;
}
/*
* Module initialization routine for arithmetic entropy encoding.
*/
GLOBAL(void)
jinit_arith_encoder (j_compress_ptr cinfo)
{
arith_entropy_ptr entropy;
int i;
entropy = (arith_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(arith_entropy_encoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;
/* Mark tables unallocated */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
entropy->dc_stats[i] = NULL;
entropy->ac_stats[i] = NULL;
}
/* Initialize index for fixed probability estimation */
entropy->fixed_bin[0] = 113;
}