-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize.py
424 lines (299 loc) · 11 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import numpy as np
import matplotlib as mpl
from pylab import *
from matplotlib import cm
##################################################
# plot values on image plane
def trans(mat):
#return np.flipud(mat.T) #trans
return np.flipud(mat).T #detrans
#mask all 0.0 elements and self.origin
def mask(mat):
return np.ma.masked_where(mat == 0, mat)
#build up a chess board layering from phi and theta coordinates
def chess_layer(phis, thetas, star_rot):
none = 0
white = 1
black = 2
Nx, Ny = np.shape(phis)
mat = np.zeros((Nx,Ny))
for i in range(Nx):
for j in range(Ny):
phi = phis[i,j]
theta = thetas[i,j]
if (phi == 0.0) and (theta == 0):
mat[i,j] = none
continue
xd = np.int(60.0*(phi + star_rot)/(2*pi))
yd = np.int(60.0*theta/(2*pi))
if (xd & 1) and (yd & 1):
mat[i,j] = black
elif (xd & 0) and (yd & 0):
mat[i,j] = black
else:
mat[i,j] = white
return mat
##################################################
#Visualization class for neutron star figures
class Visualize:
#gridspec size
nx = 3
ny = 5
#image plane width & height
x_span = 10.0
y_span = 10.0
x_bins = 200
y_bins = 200
#Interpolation type for the imshow
interpolation = 'nearest'
#Compactness for color scalings
compactness = 1.0
#flag for not re-plotting everything
initialized = False
#imshow parameters
origin='lower'
def __init__(self):
self.gs = GridSpec(self.ny, self.nx)
self.gs.update(hspace = 0.5)
self.axs = np.empty(( self.nx*self.ny ), dtype=np.object)
#Big neutron star visualization panel
self.axs[0] = subplot( self.gs[0:2, 0:2] )
self.axs[0].axis('off')
#create line object ready for spot bounding box
#self.line0, = self.axs[0].plot([0,0,0,0,0],[0,0,0,0,0],"k-")
#Other minor figures
self.axs[1] = subplot( self.gs[2, 0] )
self.axs[2] = subplot( self.gs[2, 1] )
self.axs[3] = subplot( self.gs[0, 2] )
self.axs[4] = subplot( self.gs[1, 2] )
for i in range(1,5):
self.axs[i].minorticks_on()
self.axs[1].set_title(r'emitter angle $\alpha$')
self.axs[2].set_title(r'redshift')
self.axs[3].set_title(r'$\phi$')
self.axs[4].set_title(r'$\theta$')
self.pixel_dx = 2*self.x_span / self.x_bins
self.pixel_dy = 2*self.y_span / self.y_bins
self.pixel_area = self.pixel_dx * self.pixel_dy
self.xs = np.linspace(-self.x_span, self.x_span, self.x_bins)
self.ys = np.linspace(-self.y_span, self.y_span, self.y_bins)
#build interpolated array
self.spotarea = np.zeros((self.x_bins, self.y_bins))
self.redshift = np.zeros((self.x_bins, self.y_bins))
self.obs_hit_angle = np.zeros((self.x_bins, self.y_bins))
self.times = np.zeros((self.x_bins, self.y_bins))
self.thetas = np.zeros((self.x_bins, self.y_bins))
self.phis = np.zeros((self.x_bins, self.y_bins))
# other settings for imshow
self.extent=( self.xs[0], self.xs[-1], self.ys[0], self.xs[-1] )
#polar grid
self.axs[6] = subplot( self.gs[4,:] )
self.axs[6].minorticks_on()
self.axs[6].set_xlabel(r'$\chi$')
self.axs[6].set_ylabel(r'$r$')
#Get observables from img
def dissect(self, img):
for i, xi in enumerate(self.xs):
for j, yi in enumerate(self.ys):
time, phi, theta, cosa, reds = img.get_pixel(xi, yi)
#time, phi, theta, cosa, reds = img.get_exact_pixel(xi, yi)
self.redshift[i,j] = reds
self.obs_hit_angle[i,j] = cosa
self.times[i,j] = time
self.thetas[i,j] = theta
self.phis[i,j] = phi
#Separate dissection for patterns on the surface
def dissect_spot(self, img, spot):
self.frame_x1 = self.xs[-1]
self.frame_x2 = self.xs[0]
self.frame_y1 = self.ys[-1]
self.frame_y2 = self.ys[0]
self.located_spot = False
for i, xi in enumerate(self.xs):
for j, yi in enumerate(self.ys):
time = self.times[i,j]
phi = self.phis[i,j]
theta = self.thetas[i,j]
hits_spot = spot.hit([time, theta, phi])
#Change state if we found the spot
if hits_spot:
self.located_spot = True
#record bounding boxes
self.frame_y2 = yi if self.frame_y2 < yi else self.frame_y2 #top max
self.frame_y1 = yi if self.frame_y1 > yi else self.frame_y1 #bot min
self.frame_x1 = xi if self.frame_x1 > xi else self.frame_x1 #left min
self.frame_x2 = xi if self.frame_x2 < xi else self.frame_x2 #right max
#record hit pixels
self.spotarea[i,j] = 1.0 if hits_spot else 0.0
# Locate spot boundaries by projecting spot array to x/y axis
# then look for edges of histogram
def improve_on_spot_boundaries(self):
yproj = np.sum(self.spotarea, 0)
xproj = np.sum(self.spotarea, 1)
xmi = np.argmax(xproj)
ymi = np.argmax(yproj)
xm = self.xs[xmi]
ym = self.ys[ymi]
ymin = 0.0
ymax = 0.0
i = ymi
while i > 0:
if yproj[i] == 0.0:
break
ymin = self.ys[i]
i -= 1
i = ymi
while i < len(self.ys):
if yproj[i] == 0.0:
break
ymax = self.ys[i]
i += 1
self.frame_y1 = ymin
self.frame_y2 = ymax
xmin = 0.0
xmax = 0.0
i = xmi
while i > 0:
if xproj[i] == 0.0:
break
xmin = self.xs[i]
i -= 1
i = xmi
while i < len(self.xs):
if xproj[i] == 0.0:
break
xmax = self.xs[i]
i += 1
self.frame_x1 = xmin
self.frame_x2 = xmax
##################################################
#Actual visualizations
#Star plot
def star_plot(self, star_rotation):
#Compute chess pattern
chess = chess_layer(self.phis, self.thetas, star_rotation)
chess = trans(mask(chess))
redshift = trans(mask(self.redshift))
spotarea = trans(mask(self.spotarea))
self.axs[0].clear()
self.axs[0].axis('off')
self.axs[0].imshow(
chess,
interpolation=self.interpolation,
extent=self.extent,
cmap=cm.get_cmap('Greys'),
vmin=0.8,
vmax=2.0,
alpha=0.8,
origin=self.origin
)
self.axs[0].imshow(
redshift,
interpolation=self.interpolation,
origin=self.origin,
extent=self.extent,
cmap=cm.get_cmap('coolwarm_r'),
vmin=0.9*self.compactness,
vmax=1.1*self.compactness,
alpha=0.95
)
levels = np.linspace(0.8*self.compactness, 1.2*self.compactness, 20)
self.axs[0].contour(
redshift,
levels,
hold='on',
colors='w',
origin=self.origin,
extent=self.extent,
vmin=0.8*self.compactness,
vmax=1.2*self.compactness
)
self.axs[0].imshow(
spotarea,
interpolation=self.interpolation,
extent=self.extent,
cmap=cm.get_cmap('inferno'),
alpha=0.7,
origin=self.origin
)
#Plot img class & spot
def star(self, img, spot):
self.dissect(img)
self.dissect_spot(img, spot)
phirot = -spot.star_time * spot.angvel
self.star_plot(phirot)
def plot(self, img):
self.dissect(img)
redshift = trans(mask(self.redshift))
obs_hit_angle = trans(mask(self.obs_hit_angle))
times = trans(mask(self.times))
thetas = trans(mask(self.thetas))
phis = trans(mask(self.phis))
#observer hit angle
cax = self.axs[1].imshow(
obs_hit_angle,
interpolation=self.interpolation,
extent=self.extent,
origin=self.origin
)
#colorbar(cax)
#redshift
cax = self.axs[2].imshow(
redshift,
interpolation=self.interpolation,
origin=self.origin,
extent=self.extent,
cmap=cm.get_cmap('coolwarm_r'),
vmin=0.85*self.compactness,
vmax=1.15*self.compactness
)
levels = np.linspace(0.8*self.compactness, 1.2*self.compactness, 20)
self.axs[2].contour(
redshift,
levels,
hold='on',
colors='w',
origin=self.origin,
extent=self.extent,
vmin=0.8*self.compactness,
vmax=1.2*self.compactness
)
#colorbar(cax)
#phi angle
cax = self.axs[3].imshow(
phis,
interpolation=self.interpolation,
extent=self.extent,
origin=self.origin
)
#colorbar(cax)
#theta angle
cax = self.axs[4].imshow(
thetas,
interpolation=self.interpolation,
extent=self.extent,
origin=self.origin
)
#colorbar(cax)
#Show cartesian bounding box surrounding the box
def spot_bounding_box(self):
#expand image a bit
frame_expansion_x = 4.0*np.abs(self.xs[1] - self.xs[0])
frame_expansion_y = 4.0*np.abs(self.ys[1] - self.ys[0])
self.frame_x1 -= frame_expansion_x
self.frame_x2 += frame_expansion_x
self.frame_y1 -= frame_expansion_y
self.frame_y2 += frame_expansion_y
curvex = [-self.frame_x1,
-self.frame_x2,
-self.frame_x2,
-self.frame_x1,
-self.frame_x1]
curvey = [self.frame_y1,
self.frame_y1,
self.frame_y2,
self.frame_y2,
self.frame_y1]
if self.located_spot:
self.axs[0].plot(curvex, curvey, "k-")
return [self.frame_x1, self.frame_y1, self.frame_x2, self.frame_y2]