-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathparameters.m~
235 lines (182 loc) · 7.54 KB
/
parameters.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
% Ionocraft parameters
% North-West-Up convention is used. North = x, East = y, Up = z.
% Updated by Nathan Lambert nol@berkeley.edu Aug 2017
%% Clean up
clc;
clear all;
close all;
% Plot Tweaks
set(0,'defaultAxesFontSize',15)
set(0,'DefaultLineLineWidth',2)
%% Basic and Physical Paramters
g = 9.8; % [m/s^2], acceleration of gravity
m = 67e-6; % [kg], body mass Changed from 10e-6 9/5/2017 5-e-6 is with IMU + flexboard
lx = 1e-2; % [m], x distance to body center of mass
ly = 1e-2; % [m], y distance to body center of mass
lz = 20e-6; % [m], z distance to body center of mass
rho = 1.01; % [kg/m^3]
I_B_x = (1/12)*m*ly^2; %[kg*m^2], moment of inertia around x axis
I_B_y = (1/12)*m*lx^2; %[kg*m^2], moment of inertia around y axis
I_B_z = (1/12)*m*(lx^2 + ly^2); %[kg*m^2], moment of inertia around z axis
I_B = [I_B_x 0 0; 0 I_B_y 0; 0 0 I_B_z]; % [kg*m^2], moment of inertia matrix
drag_oom = 1e-4;
bx = .05*drag_oom; %[Ns/m], damping coefficient
by = .05*drag_oom; %[Ns/m], damping coefficient
bz = 3*drag_oom; %[Ns/m], damping coefficient, 0.4e-7 used for doing roll flip
btaux = .5*drag_oom; %[Ns/m], damping coefficient, 0.4e-7 used for doing roll flip
btauy = .5*drag_oom; %[Ns/m], damping coefficient
btauz = .001*drag_oom; %[Ns/m], damping coefficient
%% Drag
%{
% Fit drag coeff data
fitted = fittype('a+d*exp(-c*(x-b)-e*x)');
fitted = fittype('a+b/(x-c)');
v = linspace(1,12,25);
Cd = (1/2).*[66, 13, 7, 5.4, 4.6, 4.1, 3.9, 3.8, 3.6, 3.5, 3.4, 3.3, 3.2, 3.15, 3.1 , 3, 2.95, 2.9, 2.8, 2.75, 2.7, 2.65, 2.6, 2.55 , 2.5 ];
[fit1, gof1, fitinf1] = fit(v',Cd',fitted, 'StartPoint', [2 6.1 -.1], 'TolFun', 1e-8);
% Preload drag numbers for normal velocities!
% drag function to be integrated
fun_rot = @(x,a) 1./2.*fit1(a.*abs(x)).*rho.*(a.*x).^2.*abs(x);
fun_lin = @(v) 1./2.*fit1(v).*rho.*v.^2;
% Precomputes Values
w = linspace(0,10,500);
v2 = linspace(0,5,500);
for i = 1:500
int = integral(@(x)fun_rot(x,w(i)),-ly,ly,'ArrayValued',true);
Taux_drag(i) = 2*lx*int;
Tauy_drag(i) = 2*ly*int;
Tauz_drag(i) = 2*lz*int;
end
for j = 1:500
Fxy_drag(j) = 4*lx*ly*fun_lin(v2(j));
Fz_drag(j) = 4*lz*ly*fun_lin(v2(j));
end
%}
%% Adding curve fitting for ALL of the drag equations vs velocity / angular
%{
fitDrag = fittype('a*x^2 + b*x');
% 0 Taux
[fitTx, gofTx, fitinfoTx] = fit(w',Taux_drag',fitDrag, 'StartPoint', [1 1], 'TolFun', 1e-8);
% 1 Tauy
[fitTy, gofTy, fitinfoTy] = fit(w',Tauy_drag',fitDrag, 'StartPoint', [1 1], 'TolFun', 1e-8);
% 2 Tauz
[fitTz, gofTz, fitinfoTz] = fit(w',Tauz_drag',fitDrag, 'StartPoint', [1 1], 'TolFun', 1e-8);
% 3 Fxy
[fitFxy, gofFxy, fitinfoFxy] = fit(v2',Fxy_drag',fitDrag, 'StartPoint', [1 1], 'TolFun', 1e-8);
% 4 Fz
[fitFz, gofFz, fitinfoFz] = fit(v2',Fz_drag',fitDrag, 'StartPoint', [1 1], 'TolFun', 1e-8);
%}
%{
fitTx =
General model:
fitTx(x) = a*x^2 + b*x
Coefficients (with 95% confidence bounds):
a = 7.49e-10 (7.41e-10, 7.569e-10)
b = 2.138e-09 (2.076e-09, 2.199e-09)
fitTy =
General model:
fitTy(x) = a*x^2 + b*x
Coefficients (with 95% confidence bounds):
a = 7.49e-10 (7.41e-10, 7.569e-10)
b = 2.138e-09 (2.076e-09, 2.199e-09)
fitTz =
General model:
fitTz(x) = a*x^2 + b*x
Coefficients (with 95% confidence bounds):
a = 1.498e-12 (1.482e-12, 1.514e-12)
b = 4.275e-12 (4.152e-12, 4.398e-12)
fitFxy =
General model:
fitFxy(x) = a*x^2 + b*x
Coefficients (with 95% confidence bounds):
a = 0.0002158 (0.0002153, 0.0002162)
b = 0.0005734 (0.0005717, 0.0005751)
fitFz =
General model:
fitFz(x) = a*x^2 + b*x
Coefficients (with 95% confidence bounds):
a = 4.315e-07 (4.307e-07, 4.324e-07)
b = 1.147e-06 (1.143e-06, 1.15e-06)
%}
% save('drag.mat', 'Taux_drag', 'Tauy_drag', 'Tauz_drag', 'Fxy_drag', 'Fz_drag')
%% Plotting thedrag such
% figure
% hold on
% plot(v,Cd)
% plot(fit1,'-.r')
% xlabel('linear velocity (m/s)')
% ylabel('Drag Coefficient (Cd)')
% title('Drag Coefficient Curve Fitting')
% legend('Raw Data', 'Fitted Curve')
% hold off
%
% figure
% hold on
% plot(v2,Fxy_drag)
% xlabel('linear velocity (m/s)')
% ylabel('Drag Force (N)')
% title('Drag Force vs Linear Velocity (x)')
% hold off
%
% figure
% hold on
% xlabel('angular velocity (rad/s)')
% ylabel('Drag Torque (N M)')
% plot(w,Taux_drag)
% title('Rotation Drag Torque vs Angular Vel (wx)')
% hold off
%% M Matrices
c = 1e-2; % [m], coupling between thruster force and yaw torque bx = 1e-5; %[Ns/m], damping coefficient
% Standard Quadcopter
M = ... % [T; Tauz; Tauy; Taux;] = M * [F4; F3; F2; F1]
[1 1 1 1;
-c c -c c;
lx lx -lx -lx;
-ly ly ly -ly;];
angle = 0.01;
% Ionocraft without XY thrusts - I think a couple of the +/-'s are off in
% this one. See below
M = ... % [T; Tauz; Tauy; Taux;] = M * [F4; F3; F2; F1]
[1*cos(angle) 1*cos(angle) 1*cos(angle) 1*cos(angle);
-lx*sin(angle) lx*sin(angle) -lx*sin(angle) lx*sin(angle);
lx*cos(angle) lx*cos(angle) -lx*cos(angle) -lx*cos(angle);
-ly*cos(angle) ly*cos(angle) ly*cos(angle) -ly*cos(angle);];
% Ionocraft with XY thrusts
M2 = ... % [Thrustx; Thrusty; Thrustz; Tauz; Tauy; Taux;] = M * [F4; F3; F2; F1]
[0 sin(angle) 0 -sin(angle); % Thrustx - all will be +/-1*sin(angle)
-sin(angle) 0 sin(angle) 0; % Thrusty
1*cos(angle) 1*cos(angle) 1*cos(angle) 1*cos(angle); % Thrustz
-lx*sin(angle) lx*sin(angle) -lx*sin(angle) lx*sin(angle); % Tauz
-lx*cos(angle) -lx*cos(angle) lx*cos(angle) lx*cos(angle); % Tauy
ly*cos(angle) -ly*cos(angle) -ly*cos(angle) ly*cos(angle);]; % Taux
% FtoV converter
FtoV = [ 7.22076994e-07 -8.70949206e-04 -5.13566754e-01];
% process variation vector
randomness = normrnd(1,.0025,4,1)
disturb = 1*[0, 1/sqrt(2), 0]
%% Matrices for PID contorllers translating PID output to force inputs
M_z = [1,1,1,1]'; % Translates PID of z direction uniformly across 4 thrusters
M_roll = [1,-1,-1,1]';
M_pitch = -1*[1,1,-1,-1]';
%% Plot Paramters (more in plot_simulation.m)
% x_lim = [-5 5]; %[cm], x axis in 3D quiver plot
% y_lim = [-5 5]; %[cm], y axis in 3D quiver plot
% z_lim = [0 10]; %[cm], z axis in 3D quiver plot
% view_1 = 15; %viewing angle for 3D quiver plot, first parameter
% view_2 = 46; %viewing angle for 3D quiver plot, second parameter
x_lim = [-10 10]; %[cm], x axis in 3D quiver plot
y_lim = [-10 10]; %[cm], y axis in 3D quiver plot
z_lim = [-3 3]; %[cm], z axis in 3D quiver plot
view_1 = 15; %viewing angle for 3D quiver plot, first parameter
view_2 = 46; %viewing angle for 3D quiver plot, second parameter
x_lim = [-20 5]; %[cm], x axis in 3D quiver plot
y_lim = [-20 5]; %[cm], y axis in 3D quiver plot
z_lim = [-3 3]; %[cm], z axis in 3D quiver plot
% set(gca,'XLim',x_lim,'YLim',y_lim,'ZLim',z_lim);
view_1 = 45-180; %viewing angle for 3D quiver plot, first parameter (like yaw rotation of plot)
view_2 = 15; %viewing angle for 3D quiver plot, second parameter (roll of plot)
% view(view_1,view_2);
video_frame_frequency = 1000; % how many frame jumps per frame that is recorded in video 66 = 60fps
sim_time = .5; %[s], how long the simulation runs
video_flag = 0; % set to 1 to record video, set to 0 otherwise
% save('parameters.mat');