-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_t2.py
153 lines (130 loc) · 5.08 KB
/
inference_t2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import chainer
from chainer import cuda, Function, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer import configuration
from chainer.training import extensions
from chainer.training import updaters
from chainer.datasets import get_cifar10, TransformDataset
from chainer.dataset import convert
from chainer import dataset
import argparse
import glob
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
import shutil
import time
import zipfile
from codes import datasets
from codes import edsr
from codes import augmentations
from codes import common
from codes import super_resolution
from codes import models
chainer.using_config('autotune', False)
device = 0
def main():
parser = argparse.ArgumentParser(description='inference for track 2.')
parser.add_argument('--model', type=str, help="the path to the trained model")
parser.add_argument('--target', type=str, help="the target path to the result saved in.")
args = parser.parse_args()
def test_inference(snapshot, ensemble=True, datafile='data/PIRMt2/normalized/test_stack_reg.npy'):
model = models.ResidualDenseNetDeconv(scale=1.5, in_size=64, in_channels=17,
out_channels=14, n_feats=256, n_RDBs=20,
n_denselayers=6,
growth_rate=64, res_scale=1)
chainer.serializers.load_npz(snapshot, model)
model.to_gpu(0)
def inference(data):
preds = []
for i in range(data.shape[0]):
sample = Variable(np.expand_dims(data[i], 0))
sample.to_gpu(0)
pred = model(sample) # (1, 14, width, height)
pred = cuda.to_cpu(pred.data[0]) # (14, width, height)
preds.append(pred)
preds = np.array(preds).astype(np.float64) # (20, 14, width, height)
return preds
orig_data = np.load(datafile).astype(np.float32)
if not ensemble:
before = time.time()
res = inference(orig_data)
print('it took {} seconds to infer 20 images'.format(time.time() - before))
return res
else:
result = np.zeros([20, 14, 240, 480]).astype(np.float64)
rots = [0, 1, 2, 3]
flip = [True, False]
for r in rots:
for j in flip:
data = np.rot90(orig_data, r, axes=(2, 3))
if j == True:
data = np.flip(data, axis=3)
res = inference(data).astype(np.float64)
if j == True:
res = np.flip(res, axis=3)
res = np.rot90(res, -r, axes=(2, 3))
result += res
result /= 8
return result
def submission(result_data, target_directory, comment="", mode="test"):
if mode == "test":
initial_number = 111
elif mode == "val":
initial_number = 101
headerfile = '''ENVI
Description = {{{}}}
file type = ENVI Standard
samples = 480
lines = 240
bands = 14
interleave = BSQ
data type = 12
wavelength = {{
477.247000,
489.555000,
500.302000,
510.928000,
523.277000,
537.970000,
548.940000,
553.063000,
562.501000,
577.373000,
590.598000,
599.917000,
612.924000,
617.508000
}}
header offset = 0
byte order = 0
reflectance scale factor = 0.000000
'''.format(comment)
result = result_data * (2 ** 16 - 1)
result = result.astype(np.uint16)
if os.path.exists(target_directory):
shutil.rmtree(target_directory)
os.mkdir(target_directory)
for i in range(20):
result[i].tofile(target_directory + '/image_{}_tr2.fla'.format(i + initial_number))
with open(target_directory + '/image_{}_tr2.hdr'.format(i + initial_number), 'w') as f:
f.write(headerfile)
files = glob.glob(target_directory + '/*')
with zipfile.ZipFile(target_directory + '/result.zip', "w", zipfile.ZIP_DEFLATED) as zf:
for f in files:
arcname = f.split('/')[-1]
zf.write(f, arcname=arcname)
subprocess.call(["rm", f])
def pipeline(snapshot, target_directory, ensemble=True, mode="test"):
if mode == "test":
datafile = 'data/PIRMt2/normalized/test_stack_reg.npy'
comment = snapshot + "ensemble: " + str(ensemble)
result = test_inference(snapshot, ensemble=ensemble, datafile=datafile)
submission(result, target_directory, comment, mode)
pipeline(args.model, args.target, ensemble=False, mode="test")
if __name__ == '__main__':
main()