-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathgradio_app.py
354 lines (273 loc) · 14.3 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import gradio as gr
import numpy as np
import torch
import requests
import random
import os
import sys
import pickle
from PIL import Image
from tqdm.auto import tqdm
from datetime import datetime
import diffusers
from diffusers import DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
import torch.nn.functional as F
from utils import preprocess_mask, process_sketch, process_prompts, process_example
#################################################
#################################################
### check diffusers version
if diffusers.__version__ != '0.20.2':
print("Please use diffusers v0.20.2")
sys.exit(0)
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
#################################################
#################################################
global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond
sreg = 0
creg = 0
sizereg = 0
COUNT = 0
reg_sizes = {}
creg_maps = {}
sreg_maps = {}
text_cond = 0
device="cuda"
MAX_COLORS = 12
HF_TOKEN = ''
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
variant="fp16",
cache_dir='./models/diffusers/',
use_auth_token=HF_TOKEN).to(device)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
timesteps = pipe.scheduler.timesteps
sp_sz = pipe.unet.sample_size
with open('./dataset/valset.pkl', 'rb') as f:
val_prompt = pickle.load(f)
val_layout = './dataset/valset_layout/'
#################################################
#################################################
def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes, text_cond
sa_ = True if encoder_hidden_states is None else False
encoder_hidden_states = text_cond if encoder_hidden_states is not None else hidden_states
if self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
if COUNT/32 < 50*0.3:
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1],
dtype=query.dtype, device=query.device),
query, key.transpose(-1, -2), beta=0, alpha=self.scale)
treg = torch.pow(timesteps[COUNT//32]/1000, 5)
## reg at self-attn
if sa_:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value)
## reg at cross-attn
else:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = creg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value)
attention_probs = sim.softmax(dim=-1)
attention_probs = attention_probs.to(dtype)
else:
attention_probs = self.get_attention_scores(query, key, attention_mask)
COUNT += 1
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
for _module in pipe.unet.modules():
if _module.__class__.__name__ == "Attention":
_module.__class__.__call__ = mod_forward
#################################################
#################################################
def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts):
global creg, sreg, sizereg
creg, sreg, sizereg = creg_, sreg_, sizereg_
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
layouts = torch.cat([preprocess_mask(mask_, sp_sz, sp_sz, device) for mask_ in binary_matrixes])
text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
###########################
###### prep for sreg ######
###########################
global sreg_maps, reg_sizes
sreg_maps = {}
reg_sizes = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layouts_s = F.interpolate(layouts,(res, res),mode='nearest')
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
reg_sizes[np.power(res, 2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(res, 2))
sreg_maps[np.power(res, 2)] = layouts_s
###########################
###### prep for creg ######
###########################
pww_maps = torch.zeros(1,77,sp_sz,sp_sz).to(device)
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
try:
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i]
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
break
except:
raise gr.Error("Please check whether every segment prompt is included in the full text !")
return
global creg_maps
creg_maps = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layout_c = F.interpolate(pww_maps,(res,res),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1)
creg_maps[np.power(res, 2)] = layout_c
###########################
#### prep for text_emb ####
###########################
global text_cond
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
global COUNT
COUNT = 0
if seed == -1:
latents = torch.randn(bsz,4,sp_sz,sp_sz).to(device)
else:
latents = torch.randn(bsz,4,sp_sz,sp_sz, generator=torch.Generator().manual_seed(seed)).to(device)
image = pipe(prompts[:1]*bsz, latents=latents).images
return(image)
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
color_layout = gr.State([])
gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''')
gr.Markdown('''
#### 😺 Instruction to generate images 😺 <br>
(1) Create the image layout. <br>
(2) Label each segment with a text prompt. <br>
(3) Adjust the full text. The default full text is automatically concatenated from each segment's text. The default one works well, but refineing the full text will further improve the result. <br>
(4) Check the generated images, and tune the hyperparameters if needed. <br>
- w<sup>c</sup> : The degree of attention modulation at cross-attention layers. <br>
- w<sup>s</sup> : The degree of attention modulation at self-attention layers. <br>
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
button_run = gr.Button("(1) I've finished my sketch ! 😺", elem_id="main_button", interactive=True)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
for n in range(MAX_COLORS):
if n == 0 :
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
else:
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
get_genprompt_run = gr.Button("(2) I've finished segment labeling ! 😺", elem_id="prompt_button", interactive=True)
with gr.Column(visible=False) as gen_prompt_vis:
general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True)
with gr.Accordion("(4) Tune the hyperparameters", open=False):
creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1)
sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1)
sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1)
bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=1, step=1)
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1)
final_run_btn = gr.Button("Generate ! 😺")
layout_path = gr.Textbox(label="layout_path", visible=False)
all_prompts = gr.Textbox(label="all_prompts", visible=False)
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height='auto')
button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False)
final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image)
gr.Examples(
examples=[[val_layout + '0.png',
'***'.join([val_prompt[0]['textual_condition']] + val_prompt[0]['segment_descriptions']), 381940206],
[val_layout + '1.png',
'***'.join([val_prompt[1]['textual_condition']] + val_prompt[1]['segment_descriptions']), 307504592],
[val_layout + '5.png',
'***'.join([val_prompt[5]['textual_condition']] + val_prompt[5]['segment_descriptions']), 114972190]],
inputs=[layout_path, all_prompts, seed_],
outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
fn=process_example,
run_on_click=True,
label='😺 Examples 😺',
)
demo.load(None, None, None, _js=load_js)
demo.launch(server_name="0.0.0.0")