-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
141 lines (128 loc) · 4.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# reference: https://github.com/haoheliu/AudioLDM/blob/main/audioldm/utils.py
import subprocess
import json
import os
import soundfile as sf
import torch
import torchvision
import torchaudio
def default_audioldm_config(model_name="audioldm-s-full"):
basic_config = {
"wave_file_save_path": "./output",
"id": {
"version": "v1",
"name": "default",
"root": "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/AudioLDM-python/config/default/latent_diffusion.yaml",
},
"preprocessing": {
"audio": {"sampling_rate": 16000, "max_wav_value": 32768},
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
"mel": {
"n_mel_channels": 64,
"mel_fmin": 0,
"mel_fmax": 8000,
"freqm": 0,
"timem": 0,
"blur": False,
"mean": -4.63,
"std": 2.74,
"target_length": 1024,
},
},
"model": {
"device": "cuda",
"target": "audioldm.pipline.LatentDiffusion",
"params": {
"base_learning_rate": 5e-06,
"linear_start": 0.0015,
"linear_end": 0.0195,
"num_timesteps_cond": 1,
"log_every_t": 200,
"timesteps": 1000,
"first_stage_key": "fbank",
"cond_stage_key": "waveform",
"latent_t_size": 256,
"latent_f_size": 16,
"channels": 8,
"cond_stage_trainable": True,
"conditioning_key": "film",
"monitor": "val/loss_simple_ema",
"scale_by_std": True,
"unet_config": {
"target": "audioldm.latent_diffusion.openaimodel.UNetModel",
"params": {
"image_size": 64,
"extra_film_condition_dim": 512,
"extra_film_use_concat": True,
"in_channels": 8,
"out_channels": 8,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
"use_spatial_transformer": True,
},
},
"first_stage_config": {
"base_learning_rate": 4.5e-05,
"target": "audioldm.variational_autoencoder.autoencoder.AutoencoderKL",
"params": {
"monitor": "val/rec_loss",
"image_key": "fbank",
"subband": 1,
"embed_dim": 8,
"time_shuffle": 1,
"ddconfig": {
"double_z": True,
"z_channels": 8,
"resolution": 256,
"downsample_time": False,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
},
},
},
"cond_stage_config": {
"target": "audioldm.clap.encoders.CLAPAudioEmbeddingClassifierFreev2",
"params": {
"key": "waveform",
"sampling_rate": 16000,
"embed_mode": "audio",
"unconditional_prob": 0.1,
},
},
},
},
}
if("-l-" in model_name):
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 256
basic_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = 64
elif("-m-" in model_name):
basic_config["model"]["params"]["unet_config"]["params"]["model_channels"] = 192
basic_config["model"]["params"]["cond_stage_config"]["params"]["amodel"] = "HTSAT-base" # This model use a larger HTAST
return basic_config
def load_json(fname):
with open(fname, "r") as f:
data = json.load(f)
return data
def read_json(dataset_json_file):
with open(dataset_json_file, "r") as fp:
data_json = json.load(fp)
return data_json["data"]
def seed_everything(seed):
import random, os
import numpy as np
import torch
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True