-
Notifications
You must be signed in to change notification settings - Fork 86
/
extract_kapture.py
194 lines (162 loc) · 9.69 KB
/
extract_kapture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
from PIL import Image
from tools import common
from tools.dataloader import norm_RGB
from nets.patchnet import *
from os import path
from extract import load_network, NonMaxSuppression, extract_multiscale
# Kapture is a pivot file format, based on text and binary files, used to describe SfM (Structure From Motion)
# and more generally sensor-acquired data
# it can be installed with
# pip install kapture
# for more information check out https://github.com/naver/kapture
import kapture
from kapture.io.records import get_image_fullpath
from kapture.io.csv import kapture_from_dir
from kapture.io.csv import get_feature_csv_fullpath, keypoints_to_file, descriptors_to_file
from kapture.io.features import get_keypoints_fullpath, keypoints_check_dir, image_keypoints_to_file
from kapture.io.features import get_descriptors_fullpath, descriptors_check_dir, image_descriptors_to_file
from kapture.io.csv import get_all_tar_handlers
def extract_kapture_keypoints(args):
"""
Extract r2d2 keypoints and descritors to the kapture format directly
"""
print('extract_kapture_keypoints...')
with get_all_tar_handlers(args.kapture_root,
mode={kapture.Keypoints: 'a',
kapture.Descriptors: 'a',
kapture.GlobalFeatures: 'r',
kapture.Matches: 'r'}) as tar_handlers:
kdata = kapture_from_dir(args.kapture_root, None,
skip_list=[kapture.GlobalFeatures,
kapture.Matches,
kapture.Points3d,
kapture.Observations],
tar_handlers=tar_handlers)
assert kdata.records_camera is not None
image_list = [filename for _, _, filename in kapture.flatten(kdata.records_camera)]
if args.keypoints_type is None:
args.keypoints_type = path.splitext(path.basename(args.model))[0]
print(f'keypoints_type set to {args.keypoints_type}')
if args.descriptors_type is None:
args.descriptors_type = path.splitext(path.basename(args.model))[0]
print(f'descriptors_type set to {args.descriptors_type}')
if kdata.keypoints is not None and args.keypoints_type in kdata.keypoints \
and kdata.descriptors is not None and args.descriptors_type in kdata.descriptors:
print('detected already computed features of same keypoints_type/descriptors_type, resuming extraction...')
image_list = [name
for name in image_list
if name not in kdata.keypoints[args.keypoints_type] or
name not in kdata.descriptors[args.descriptors_type]]
if len(image_list) == 0:
print('All features were already extracted')
return
else:
print(f'Extracting r2d2 features for {len(image_list)} images')
iscuda = common.torch_set_gpu(args.gpu)
# load the network...
net = load_network(args.model)
if iscuda:
net = net.cuda()
# create the non-maxima detector
detector = NonMaxSuppression(
rel_thr=args.reliability_thr,
rep_thr=args.repeatability_thr)
if kdata.keypoints is None:
kdata.keypoints = {}
if kdata.descriptors is None:
kdata.descriptors = {}
if args.keypoints_type not in kdata.keypoints:
keypoints_dtype = None
keypoints_dsize = None
else:
keypoints_dtype = kdata.keypoints[args.keypoints_type].dtype
keypoints_dsize = kdata.keypoints[args.keypoints_type].dsize
if args.descriptors_type not in kdata.descriptors:
descriptors_dtype = None
descriptors_dsize = None
else:
descriptors_dtype = kdata.descriptors[args.descriptors_type].dtype
descriptors_dsize = kdata.descriptors[args.descriptors_type].dsize
for image_name in image_list:
img_path = get_image_fullpath(args.kapture_root, image_name)
print(f"\nExtracting features for {img_path}")
img = Image.open(img_path).convert('RGB')
W, H = img.size
img = norm_RGB(img)[None]
if iscuda:
img = img.cuda()
# extract keypoints/descriptors for a single image
xys, desc, scores = extract_multiscale(net, img, detector,
scale_f=args.scale_f,
min_scale=args.min_scale,
max_scale=args.max_scale,
min_size=args.min_size,
max_size=args.max_size,
verbose=True)
xys = xys.cpu().numpy()
desc = desc.cpu().numpy()
scores = scores.cpu().numpy()
idxs = scores.argsort()[-args.top_k or None:]
xys = xys[idxs]
desc = desc[idxs]
if keypoints_dtype is None or descriptors_dtype is None:
keypoints_dtype = xys.dtype
descriptors_dtype = desc.dtype
keypoints_dsize = xys.shape[1]
descriptors_dsize = desc.shape[1]
kdata.keypoints[args.keypoints_type] = kapture.Keypoints('r2d2', keypoints_dtype, keypoints_dsize)
kdata.descriptors[args.descriptors_type] = kapture.Descriptors('r2d2', descriptors_dtype,
descriptors_dsize,
args.keypoints_type, 'L2')
keypoints_config_absolute_path = get_feature_csv_fullpath(kapture.Keypoints,
args.keypoints_type,
args.kapture_root)
descriptors_config_absolute_path = get_feature_csv_fullpath(kapture.Descriptors,
args.descriptors_type,
args.kapture_root)
keypoints_to_file(keypoints_config_absolute_path, kdata.keypoints[args.keypoints_type])
descriptors_to_file(descriptors_config_absolute_path, kdata.descriptors[args.descriptors_type])
else:
assert kdata.keypoints[args.keypoints_type].dtype == xys.dtype
assert kdata.descriptors[args.descriptors_type].dtype == desc.dtype
assert kdata.keypoints[args.keypoints_type].dsize == xys.shape[1]
assert kdata.descriptors[args.descriptors_type].dsize == desc.shape[1]
assert kdata.descriptors[args.descriptors_type].keypoints_type == args.keypoints_type
assert kdata.descriptors[args.descriptors_type].metric_type == 'L2'
keypoints_fullpath = get_keypoints_fullpath(args.keypoints_type, args.kapture_root,
image_name, tar_handlers)
print(f"Saving {xys.shape[0]} keypoints to {keypoints_fullpath}")
image_keypoints_to_file(keypoints_fullpath, xys)
kdata.keypoints[args.keypoints_type].add(image_name)
descriptors_fullpath = get_descriptors_fullpath(args.descriptors_type, args.kapture_root,
image_name, tar_handlers)
print(f"Saving {desc.shape[0]} descriptors to {descriptors_fullpath}")
image_descriptors_to_file(descriptors_fullpath, desc)
kdata.descriptors[args.descriptors_type].add(image_name)
if not keypoints_check_dir(kdata.keypoints[args.keypoints_type], args.keypoints_type,
args.kapture_root, tar_handlers) or \
not descriptors_check_dir(kdata.descriptors[args.descriptors_type], args.descriptors_type,
args.kapture_root, tar_handlers):
print('local feature extraction ended successfully but not all files were saved')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
"Extract r2d2 local features for all images in a dataset stored in the kapture format")
parser.add_argument("--model", type=str, required=True, help='model path')
parser.add_argument('--keypoints-type', default=None, help='keypoint type_name, default is filename of model')
parser.add_argument('--descriptors-type', default=None, help='descriptors type_name, default is filename of model')
parser.add_argument("--kapture-root", type=str, required=True, help='path to kapture root directory')
parser.add_argument("--top-k", type=int, default=5000, help='number of keypoints')
parser.add_argument("--scale-f", type=float, default=2**0.25)
parser.add_argument("--min-size", type=int, default=256)
parser.add_argument("--max-size", type=int, default=1024)
parser.add_argument("--min-scale", type=float, default=0)
parser.add_argument("--max-scale", type=float, default=1)
parser.add_argument("--reliability-thr", type=float, default=0.7)
parser.add_argument("--repeatability-thr", type=float, default=0.7)
parser.add_argument("--gpu", type=int, nargs='+', default=[0], help='use -1 for CPU')
args = parser.parse_args()
extract_kapture_keypoints(args)