-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
182 lines (152 loc) · 6.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import Optional, Tuple, List
import torch
import torch.nn.functional as F
from clip.model import CLIP
from transformers import CLIPVisionModelWithProjection
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
from data_utils import collate_fn
from models import Phi
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
@torch.no_grad()
def extract_image_features(dataset: Dataset, clip_model: CLIPVisionModelWithProjection, batch_size: Optional[int] = 32,
num_workers: Optional[int] = 10) -> Tuple[torch.Tensor, List[str]]:
"""
Extracts image features from a dataset using a CLIP model.
"""
# Create data loader
loader = DataLoader(dataset=dataset, batch_size=batch_size,
num_workers=num_workers, pin_memory=True, collate_fn=collate_fn)
index_features = []
index_names = []
try:
print(f"extracting image features {dataset.__class__.__name__} - {dataset.split}")
except Exception as e:
pass
# Extract features
for batch in tqdm(loader):
images = batch.get('image')
names = batch.get('image_name')
if images is None:
images = batch.get('reference_image')
if names is None:
names = batch.get('reference_name')
images = images.to(clip_model.device)
with torch.no_grad():
batch_features = clip_model(pixel_values=images.to(clip_model.dtype)).image_embeds #.encode_image(images)
index_features.append(batch_features.cpu())
index_names.extend(names)
index_features = torch.vstack(index_features)
return index_features, index_names
def contrastive_loss(v1: torch.Tensor, v2: torch.Tensor, temperature: float) -> torch.Tensor:
# Based on https://github.com/NVlabs/PALAVRA/blob/main/utils/nv.py
v1 = F.normalize(v1, dim=1)
v2 = F.normalize(v2, dim=1)
numerator = torch.exp(torch.diag(torch.inner(v1, v2)) / temperature)
numerator = torch.cat((numerator, numerator), 0)
joint_vector = torch.cat((v1, v2), 0)
pairs_product = torch.exp(torch.mm(joint_vector, joint_vector.t()) / temperature)
denominator = torch.sum(pairs_product - pairs_product * torch.eye(joint_vector.shape[0]).to(device), 0)
loss = -torch.mean(torch.log(numerator / denominator))
return loss
@torch.no_grad()
def extract_pseudo_tokens_with_phi(clip_model: CLIPVisionModelWithProjection, phi: Phi, dataset: Dataset, args) -> Tuple[torch.Tensor, List[str]]:
"""
Extracts pseudo tokens from a dataset using a CLIP model and a phi model
"""
data_loader = DataLoader(dataset=dataset, batch_size=32, num_workers=10, pin_memory=False,
collate_fn=collate_fn)
predicted_tokens = []
names_list = []
print(f"Extracting tokens using phi model")
for batch in tqdm(data_loader):
images = batch.get('image')
names = batch.get('image_name')
if images is None:
images = batch.get('reference_image')
if names is None:
names = batch.get('reference_name')
images = images.to(device)
image_features = clip_model(pixel_values=images.half()).image_embeds
if args.l2_normalize:
image_features = F.normalize(image_features, dim=-1)
batch_predicted_tokens = phi(image_features)
predicted_tokens.append(batch_predicted_tokens.cpu())
names_list.extend(names)
predicted_tokens = torch.vstack(predicted_tokens)
return predicted_tokens, names_list
@torch.no_grad()
def extract_image_features_with_names(clip_model: CLIPVisionModelWithProjection, dataset: Dataset) -> Tuple[torch.Tensor, List[str]]:
"""
Extracts image features from a dataset using a CLIP model
"""
data_loader = DataLoader(dataset=dataset, batch_size=32, num_workers=10, pin_memory=False,
collate_fn=collate_fn)
predicted_tokens = []
names_list = []
print(f"Extracting tokens using phi model")
for batch in tqdm(data_loader):
images = batch.get('image')
names = batch.get('image_name')
if images is None:
images = batch.get('reference_image')
if names is None:
names = batch.get('reference_name')
images = images.to(device)
image_features = clip_model(pixel_values=images.to(clip_model.dtype)).image_embeds
#batch_predicted_tokens = phi(image_features)
batch_predicted_tokens = image_features
predicted_tokens.append(batch_predicted_tokens.cpu())
names_list.extend(names)
predicted_tokens = torch.vstack(predicted_tokens)
return predicted_tokens, names_list
class CustomTensorDataset(Dataset):
"""
Custom Tensor Dataset which yields image_features and image_names
"""
def __init__(self, images: torch.Tensor, names: torch.Tensor):
self.images = images
self.names = names
def __getitem__(self, index) -> dict:
return {'image': self.images[index],
'image_name': self.names[index]
}
def __len__(self):
return len(self.images)
def get_templates():
"""
Return a list of templates
Same templates as in PALAVRA: https://arxiv.org/abs/2204.01694
"""
return [
"This is a photo of a {}",
"This photo contains a {}",
"A photo of a {}",
"This is an illustration of a {}",
"This illustration contains a {}",
"An illustrations of a {}",
"This is a sketch of a {}",
"This sketch contains a {}",
"A sketch of a {}",
"This is a diagram of a {}",
"This diagram contains a {}",
"A diagram of a {}",
"A {}",
"We see a {}",
"{}",
"We see a {} in this photo",
"We see a {} in this image",
"We see a {} in this illustration",
"We see a {} photo",
"We see a {} image",
"We see a {} illustration",
"{} photo",
"{} image",
"{} illustration",
]