-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvalidate.py
650 lines (517 loc) · 30.3 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import json
import pickle
from argparse import ArgumentParser
from typing import List, Dict, Tuple
import clip
import numpy as np
import torch
import torch.nn.functional as F
from clip.model import CLIP
from transformers import CLIPTextModelWithProjection
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
from data_utils import collate_fn, PROJECT_ROOT, targetpad_transform
from loader import FashionIQDataset, CIRRDataset, CIRCODataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
from utils import extract_image_features, device, extract_pseudo_tokens_with_phi
torch.multiprocessing.set_sharing_strategy('file_system')
@torch.no_grad()
def fiq_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[torch.Tensor, List[str]]:
"""
Generates features predictions for the validation set of Fashion IQ.
"""
# Create data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
# Compute features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_captions']
flattened_captions: list = np.array(relative_captions).T.flatten().tolist()
input_captions = [
f"{flattened_captions[i].strip('.?, ')} and {flattened_captions[i + 1].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions_reversed = [
f"{flattened_captions[i + 1].strip('.?, ')} and {flattened_captions[i].strip('.?, ')}" for
i in range(0, len(flattened_captions), 2)]
input_captions = [
f"a photo of $ that {in_cap}" for in_cap in input_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
input_captions_reversed = [
f"a photo of $ that {in_cap}" for in_cap in input_captions_reversed]
tokenized_input_captions_reversed = clip.tokenize(input_captions_reversed, context_length=77).to(device)
text_features_reversed = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions_reversed,
batch_tokens)
predicted_features = F.normalize((F.normalize(text_features) + F.normalize(text_features_reversed)) / 2)
# predicted_features = F.normalize((text_features + text_features_reversed) / 2)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list
@torch.no_grad()
def fiq_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names = fiq_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list,
pseudo_tokens)
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
# Compute the distances
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Check if the target names are in the top 10 and top 50
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names)).reshape(len(target_names), -1))
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
return {'fiq_recall_at10': recall_at10,
'fiq_recall_at50': recall_at50}
@torch.no_grad()
def fiq_val_retrieval(dataset_path: str, dress_type: str, image_encoder, text_encoder, ref_names_list: List[str],
pseudo_tokens: torch.Tensor, preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the FashionIQ validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative dataset
relative_val_dataset = FashionIQDataset(dataset_path, 'val', [dress_type], 'relative', preprocess)
return fiq_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
@torch.no_grad()
def cirr_generate_val_predictions(clip_model: CLIPTextModelWithProjection, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_generate_val_predictions_with_phi(clip_model: CLIPTextModelWithProjection, phi, relative_val_dataset: Dataset, ref_names_list: List[str],
image_features: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generates features predictions for the validation set of CIRR
"""
# Define the dataloader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn)
predicted_features_list = []
target_names_list = []
group_members_list = []
reference_names_list = []
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
# we need to make batch_tokens with selected_image_features
selected_image_features = torch.vstack([image_features[ref_names_list.index(ref)] for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
context = clip_model.text_model.embeddings.token_embedding(tokenized_input_captions) + clip_model.text_model.embeddings.position_embedding(clip_model.text_model.embeddings.position_ids)
batch_tokens = phi(selected_image_features, context)
#batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
group_members_list.extend(group_members)
reference_names_list.extend(reference_names)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, target_names_list, group_members_list
@torch.no_grad()
def cirr_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions(clip_model, relative_val_dataset, ref_names_list, pseudo_tokens)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_compute_val_metrics_with_phi(relative_val_dataset: Dataset, clip_model: CLIPTextModelWithProjection, phi, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], image_features: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, reference_names, target_names, group_members = \
cirr_generate_val_predictions_with_phi(clip_model, phi, relative_val_dataset, ref_names_list, image_features)
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the index features
index_features = F.normalize(index_features, dim=-1).float()
predicted_features = predicted_features.float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(target_names), -1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the ground-truth labels wrt the predictions
labels = torch.tensor(
sorted_index_names == np.repeat(np.array(target_names), len(index_names) - 1).reshape(len(target_names), -1))
# Compute the subset predictions and ground-truth labels
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
group_labels = labels[group_mask].reshape(labels.shape[0], -1)
assert torch.equal(torch.sum(labels, dim=-1).int(), torch.ones(len(target_names)).int())
assert torch.equal(torch.sum(group_labels, dim=-1).int(), torch.ones(len(target_names)).int())
# Compute the metrics
recall_at1 = (torch.sum(labels[:, :1]) / len(labels)).item() * 100
recall_at5 = (torch.sum(labels[:, :5]) / len(labels)).item() * 100
recall_at10 = (torch.sum(labels[:, :10]) / len(labels)).item() * 100
recall_at50 = (torch.sum(labels[:, :50]) / len(labels)).item() * 100
group_recall_at1 = (torch.sum(group_labels[:, :1]) / len(group_labels)).item() * 100
group_recall_at2 = (torch.sum(group_labels[:, :2]) / len(group_labels)).item() * 100
group_recall_at3 = (torch.sum(group_labels[:, :3]) / len(group_labels)).item() * 100
return {
'cirr_recall_at1': recall_at1,
'cirr_recall_at5': recall_at5,
'cirr_recall_at10': recall_at10,
'cirr_recall_at50': recall_at50,
'cirr_group_recall_at1': group_recall_at1,
'cirr_group_recall_at2': group_recall_at2,
'cirr_group_recall_at3': group_recall_at3,
}
@torch.no_grad()
def cirr_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: list, pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRR validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRRDataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRRDataset(dataset_path, 'val', 'relative', preprocess)
return cirr_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names,
ref_names_list, pseudo_tokens)
@torch.no_grad()
def circo_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[
torch.Tensor, List[str], list]:
"""
Generates features predictions for the validation set of CIRCO
"""
# Create the data loader
relative_val_loader = DataLoader(dataset=relative_val_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
target_names_list = []
gts_img_ids_list = []
# Compute the features
for batch in tqdm(relative_val_loader):
reference_names = batch['reference_name']
target_names = batch['target_name']
relative_captions = batch['relative_caption']
gt_img_ids = batch['gt_img_ids']
gt_img_ids = np.array(gt_img_ids).T.tolist()
input_captions = [f"a photo of $ that {caption}" for caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
target_names_list.extend(target_names)
gts_img_ids_list.extend(gt_img_ids)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, target_names_list, gts_img_ids_list
@torch.no_grad()
def circo_compute_val_metrics(relative_val_dataset: Dataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the dataset, pseudo tokens and the reference names
"""
# Generate the predicted features
predicted_features, target_names, gts_img_ids = circo_generate_val_predictions(clip_model, relative_val_dataset,
ref_names_list, pseudo_tokens)
ap_at5 = []
ap_at10 = []
ap_at25 = []
ap_at50 = []
recall_at5 = []
recall_at10 = []
recall_at25 = []
recall_at50 = []
# Move the features to the device
index_features = index_features.to(device)
predicted_features = predicted_features.to(device)
# Normalize the features
index_features = F.normalize(index_features.float())
for predicted_feature, target_name, gt_img_ids in tqdm(zip(predicted_features, target_names, gts_img_ids)):
gt_img_ids = np.array(gt_img_ids)[
np.array(gt_img_ids) != ''] # remove trailing empty strings added for collate_fn
similarity = predicted_feature @ index_features.T
sorted_indices = torch.topk(similarity, dim=-1, k=50).indices.cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
map_labels = torch.tensor(np.isin(sorted_index_names, gt_img_ids), dtype=torch.uint8)
precisions = torch.cumsum(map_labels, dim=0) * map_labels # Consider only positions corresponding to GTs
precisions = precisions / torch.arange(1, map_labels.shape[0] + 1) # Compute precision for each position
ap_at5.append(float(torch.sum(precisions[:5]) / min(len(gt_img_ids), 5)))
ap_at10.append(float(torch.sum(precisions[:10]) / min(len(gt_img_ids), 10)))
ap_at25.append(float(torch.sum(precisions[:25]) / min(len(gt_img_ids), 25)))
ap_at50.append(float(torch.sum(precisions[:50]) / min(len(gt_img_ids), 50)))
assert target_name == gt_img_ids[0], f"Target name not in GTs {target_name} {gt_img_ids}"
single_gt_labels = torch.tensor(sorted_index_names == target_name)
recall_at5.append(float(torch.sum(single_gt_labels[:5])))
recall_at10.append(float(torch.sum(single_gt_labels[:10])))
recall_at25.append(float(torch.sum(single_gt_labels[:25])))
recall_at50.append(float(torch.sum(single_gt_labels[:50])))
map_at5 = np.mean(ap_at5) * 100
map_at10 = np.mean(ap_at10) * 100
map_at25 = np.mean(ap_at25) * 100
map_at50 = np.mean(ap_at50) * 100
recall_at5 = np.mean(recall_at5) * 100
recall_at10 = np.mean(recall_at10) * 100
recall_at25 = np.mean(recall_at25) * 100
recall_at50 = np.mean(recall_at50) * 100
return {
'circo_map_at5': map_at5,
'circo_map_at10': map_at10,
'circo_map_at25': map_at25,
'circo_map_at50': map_at50,
'circo_recall_at5': recall_at5,
'circo_recall_at10': recall_at10,
'circo_recall_at25': recall_at25,
'circo_recall_at50': recall_at50,
}
@torch.no_grad()
def circo_val_retrieval(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str], pseudo_tokens: torch.Tensor,
preprocess: callable) -> Dict[str, float]:
"""
Compute the retrieval metrics on the CIRCO validation set given the pseudo tokens and the reference names
"""
# Load the model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Extract the index features
classic_val_dataset = CIRCODataset(dataset_path, 'val', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_val_dataset, image_encoder)
# Define the relative validation dataset
relative_val_dataset = CIRCODataset(dataset_path, 'val', 'relative', preprocess)
return circo_compute_val_metrics(relative_val_dataset, text_encoder, index_features, index_names, ref_names_list,
pseudo_tokens)
def main():
parser = ArgumentParser()
parser.add_argument("--exp-name", type=str, help="Experiment to evaluate")
parser.add_argument("--eval-type", type=str, choices=['oti', 'phi', 'searle', 'searle-xl', 'pic2word'], required=True,
help="If 'oti' evaluate directly using the inverted oti pseudo tokens, "
"if 'phi' predicts the pseudo tokens using the phi network, "
"if 'searle' uses the pre-trained SEARLE model to predict the pseudo tokens, "
"if 'searle-xl' uses the pre-trained SEARLE-XL model to predict the pseudo tokens"
)
parser.add_argument("--dataset", type=str, required=True, choices=['cirr', 'fashioniq', 'circo'],
help="Dataset to use")
parser.add_argument("--dataset-path", type=str, help="Path to the dataset", required=True)
parser.add_argument("--preprocess-type", default="clip", type=str, choices=['clip', 'targetpad'],
help="Preprocess pipeline to use")
parser.add_argument("--phi-checkpoint-name", type=str,
help="Phi checkpoint to use, needed when using phi, e.g. 'phi_20.pt'")
parser.add_argument("--clip_model_name", default="giga", type=str)
parser.add_argument("--cache_dir", default="./hf_models", type=str)
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
args = parser.parse_args()
#if args.eval_type in ['phi', 'oti'] and args.exp_name is None:
# raise ValueError("Experiment name is required when using phi or oti evaluation type")
if args.eval_type == 'phi' and args.phi_checkpoint_name is None:
raise ValueError("Phi checkpoint name is required when using phi evaluation type")
if args.eval_type == 'oti':
experiment_path = PROJECT_ROOT / 'data' / "oti_pseudo_tokens" / args.dataset.lower() / 'val' / args.exp_name
if not experiment_path.exists():
raise ValueError(f"Experiment {args.exp_name} not found")
with open(experiment_path / 'hyperparameters.json') as f:
hyperparameters = json.load(f)
pseudo_tokens = torch.load(experiment_path / 'ema_oti_pseudo_tokens.pt', map_location=device)
with open(experiment_path / 'image_names.pkl', 'rb') as f:
ref_names_list = pickle.load(f)
clip_model_name = hyperparameters['clip_model_name']
clip_model, clip_preprocess = clip.load(clip_model_name, device='cpu', jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
elif args.eval_type in ['phi', 'searle', 'searle-xl', 'pic2word']:
if args.eval_type == 'phi':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=0.5).to(
device)
phi.load_state_dict(
torch.load(args.phi_checkpoint_name, map_location=device)[
phi.__class__.__name__])
phi = phi.eval()
elif args.eval_type == 'pic2word':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = PIC2WORD(embed_dim=text_encoder.config.projection_dim,
output_dim=text_encoder.config.hidden_size,
).to(device)
sd = torch.load(args.phi_checkpoint_name, map_location=device)['state_dict_img2text']
sd = {k[len('module.'):]: v for k, v in sd.items()}
phi.load_state_dict(sd)
phi = phi.eval()
else: # searle or searle-xl
if args.eval_type == 'searle':
clip_model_name = 'ViT-B/32'
else: # args.eval_type == 'searle-xl':
clip_model_name = 'ViT-L/14'
phi, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
backbone=clip_model_name)
phi = phi.to(device).eval()
clip_model, clip_preprocess = clip.load(clip_model_name, device=device, jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
if args.dataset.lower() == 'fashioniq':
relative_val_dataset = FashionIQDataset(args.dataset_path, 'val', ['dress', 'toptee', 'shirt'],
'relative', preprocess, no_duplicates=True)
elif args.dataset.lower() == 'cirr':
relative_val_dataset = CIRRDataset(args.dataset_path, 'val', 'relative', preprocess,
no_duplicates=True)
elif args.dataset.lower() == 'circo':
relative_val_dataset = CIRCODataset(args.dataset_path, 'val', 'relative', preprocess)
else:
raise ValueError("Dataset not supported")
#clip_model = clip_model.float().to(device)
image_encoder = image_encoder.float().to(device)
text_encoder = text_encoder.float().to(device)
pseudo_tokens, ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi, relative_val_dataset, args)
pseudo_tokens = pseudo_tokens.to(device)
else:
raise ValueError("Eval type not supported")
print(f"Eval type = {args.eval_type} \t exp name = {args.exp_name} \t")
if args.dataset.lower() == 'fashioniq':
recalls_at10 = []
recalls_at50 = []
for dress_type in ['shirt', 'dress', 'toptee']:
fiq_metrics = fiq_val_retrieval(args.dataset_path, dress_type, image_encoder, text_encoder, ref_names_list,
pseudo_tokens, preprocess)
recalls_at10.append(fiq_metrics['fiq_recall_at10'])
recalls_at50.append(fiq_metrics['fiq_recall_at50'])
for k, v in fiq_metrics.items():
print(f"{dress_type}_{k} = {v:.2f}")
print("\n")
print(f"average_fiq_recall_at10 = {np.mean(recalls_at10):.2f}")
print(f"average_fiq_recall_at50 = {np.mean(recalls_at50):.2f}")
elif args.dataset.lower() == 'cirr':
cirr_metrics = cirr_val_retrieval(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
preprocess)
for k, v in cirr_metrics.items():
print(f"{k} = {v:.2f}")
elif args.dataset.lower() == 'circo':
circo_metrics = circo_val_retrieval(args.dataset_path, clip_model_name, ref_names_list, pseudo_tokens,
preprocess)
for k, v in circo_metrics.items():
print(f"{k} = {v:.2f}")
if __name__ == '__main__':
main()